

AOR DELINEATION

CTV VI

Computational Modeling Results

1. Predictions of System Behavior

Figure 1 and **Figures 2a through 2g** show the computational modeling results and development of the CO₂ plume at different time steps. The plume boundary is defined by a 0.01 CO₂ global mole fraction cutoff at 100 years post-injection, which results in a boundary that contains 99.99 percent of the total injected CO₂ mass for injection. This cutoff provides confidence that the corrective action well review and potential impact to USDWs is conservative and has been appropriately evaluated. **Figures 2a through 2g** display cross sections of the plume evolution for the base case scenario at each injection well location. The average reservoir pressure in the approximate CO₂ plume area vs. time for **Claimed as PBI** [REDACTED] are shown in **Figure 3**.

Claimed as PBI [REDACTED]
[REDACTED]
[REDACTED]
[REDACTED]

cumulative storage for each of the mechanisms.

Figure 4 shows the

2. Model Calibration and Validation

In addition to the plume modeling, CTV performed a volumetric estimate of the storage capacity of our plume footprint using U.S. Department of Energy (DOE) methodology (Goodman et al., 2011), using distributions from our geomodel for the storage reservoir and CO₂ properties, and storage efficiency coefficients for a deltaic sandstone reservoir using the widely applicable storage efficiency coefficients from Gorecki et al. (2009). The P50 estimate from this volumetric approach was **Claimed as PBI** [REDACTED], which is well over the estimate from our dynamic modeling, which gives us further confidence that our storage capacity estimate from the dynamic modeling is appropriate.

CO₂ Injectate Effect on Plume and Aor Modeling Results

The compositional simulation model developed in CMG GEM software was run for the two simplified injectate compositions discussed in Section 7.2 of **Attachment A**, and their results were also compared against a 100 percent CO₂ injectate case. The cumulative volume, rate, and injection duration for all three cases were kept the same.

The Injection Zones CO₂ plume for Injectate 1 and Injectate 2 is consistent with the plume outline for 100 percent CO₂ injectate (**Figure 5**), with negligible difference among the three cases. The CO₂ plume outline was defined by a 0.01 global CO₂ mole fraction cutoff at 100 years post-injection for all three cases. The 100-year post end of injection plumes for the three cases are shown in **Figure 5**. The wells that fall within the CO₂ plume are the same for all three cases.

Additionally, the average pore volume weighted reservoir pressure within the approximate plume boundary for three Injection Zones was plotted for the three cases and was found to be very close, with a maximum difference of 4 pounds per square inch (psi) seen between the cases, as shown in **Figure 6**. Multiple scenarios were also run to test the effect of mixing Injectate 1 and Injectate 2 in different ratios on the plume shapes. As expected, because the resulting mixed injectates were still high-purity CO₂ streams with impurity concentrations in between those of Injectates 1 and 2, the plume shapes for these scenarios were within the envelope represented by the end-point compositions.

In summary, there is minimal effect of the minor components on the CO₂ plume boundary for the proposed injectate compositions. As such, CTV's plume and AoR modeling for corrective action assessment is adequate for the expected injectate composition ranges. CTV will confirm that the properties of the injectate are consistent with the model inputs during pre-operational injectate sampling, and will do so for any additional sources. In addition, the AoR will be reviewed per **Section 6 Reevaluation Schedule and Criteria**.

Sensitivity Cases

The base model simulation case (base case) contains a realistic representation of the hydrogeologic structure with conservative assumptions about site conditions, making the base case suitable for delineating the AoR. A sensitivity analysis was performed to examine the effects of varying inputs that represent site conditions with the potential to significantly impact the simulation results. The sensitivity analysis scenarios are listed in **Table 1** and include permeability, porosity, phase trapping, relative permeability end points and shape, and capillary pressure. The sensitivity analysis is performed using 100 percent CO₂ injectate in all scenarios. Results from the sensitivity analysis are displayed graphically in **Figure 7 and 8**.

To quantify the results of the sensitivity analysis, the size of the CO₂ plume was measured as an area (using the 0.01 CO₂ global mole fraction cutoff at 100 years post-injection) and the changes are quantified as percentage changes compared with the base case. There are only two cases with a plume size change greater than 10 percent compared to the base case. Case C results in a +34.7 percent plume size change, corresponding to increasing the permeability transform by a multiplier of 3, which is a high-end increase in the system permeability. Case A showed a -12.1 percent plume size change, corresponding to a porosity multiplier of 1.24. In all the sensitivity cases, the resulting CO₂ plume boundaries are similar and do not overlie additional corrective action wells except for Case C. Case C would have the potential to add three corrective action wells within the plume.

Overall, based on these sensitivity analyses, the proposed base case is considered conservative. The sensitivity analysis provides confidence that the corrective action well review and assessment of the potential endangerment of the USDW based on the base case are conservative and have been appropriately evaluated. During pre-operational testing, the model will be updated and the AoR and corrective action wells list will be re-evaluated based on the additional site-specific data gathered.

3. AoR Delineation

AoR delineation consists of determining the outermost extent of the separate-phase CO₂ plume and area of elevated pressure (pressure front) that pose risk to USDWs during the lifetime of the project. Elevated pressure may pose a risk to USDWs due to the potential for brine leakage from the injection zone into a USDW through an existing conduit, such as an improperly abandoned well. In most cases the AoR will at a minimum be defined by the CO₂

plume footprint and may be larger if the pressure front extends beyond the CO₂ plume. CTV VI used the risk-based AOR approach as documented in **Appendix 9: Risk Based AoR Delineation (Appendix 9)**.

Various methods are available to determine the pressure threshold value that defines the outermost extent of the pressure front. In general, these methods are used to define a pressure at which brine will leak upwards through an abandoned well, leak into a USDW, and endanger the USDW due to water quality impairment. Risk-based AoR delineation accounts for processes that inhibit brine leakage through abandoned wells (e.g., presence of the mud column) and processes that minimize potential USDW impacts from hypothetical brine leakage (e.g., dilution and attenuation in the USDW). Risk-based AoR delineation strategies are supported by the U.S. Environmental Protection Agency (EPA) *Class VI AoR and Corrective Action Guidance* (p. 42).

Appendix 9 risk-based AoR delineation consisted of modeling brine leakage under conservative assumptions and resulting salinity impacts to the lowermost USDW. Brine leakage and USDW salinity transport modeling used conservative assumptions and accepted methods to simulate (1) brine leakage through an abandoned well and (2) subsequent contaminant fate and transport within the lowermost USDW. Modeling indicated that the vast majority of brine leakage through a hypothetical abandoned well in the vicinity of the project would discharge to the Zilch dissipation zone (below the lowermost UDSW); therefore, brine leakage to the USDW would be negligible. Concomitantly, elevated salinity levels in the lowermost USDW are calculated to be negligible. These results were based on an assumed injection-zone pressure increase of 500 psi. CMG-GEM modeling results indicate that a pressure increase of this magnitude will not occur outside the boundary of the CO₂ plume.

Based on these results, pressures great enough to endanger USDWs are not anticipated outside the CO₂ plume footprint, and the final AoR boundary was based on the extent of the CO₂ plume. **Figure 9** shows the AoR extent, injector locations, and proposed monitoring well locations. Details on the monitoring wells are discussed further in **Attachment C**.

Table 1. Simulation sensitivity scenarios

Claimed as PBI	
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34
35	36
37	38
39	40
41	42
43	44
45	46
47	48
49	50
51	52
53	54
55	56
57	58
59	60
61	62
63	64
65	66
67	68
69	70
71	72
73	74
75	76
77	78
79	80
81	82
83	84
85	86
87	88
89	90
91	92
93	94
95	96
97	98
99	100
101	102
103	104
105	106
107	108
109	110
111	112
113	114
115	116
117	118
119	120
121	122
123	124
125	126
127	128
129	130
131	132
133	134
135	136
137	138
139	140
141	142
143	144
145	146
147	148
149	150
151	152
153	154
155	156
157	158
159	160
161	162
163	164
165	166
167	168
169	170
171	172
173	174
175	176
177	178
179	180
181	182
183	184
185	186
187	188
189	190
191	192
193	194
195	196
197	198
199	200
201	202
203	204
205	206
207	208
209	210
211	212
213	214
215	216
217	218
219	220
221	222
223	224
225	226
227	228
229	230
231	232
233	234
235	236
237	238
239	240
241	242
243	244
245	246
247	248
249	250
251	252
253	254
255	256
257	258
259	260
261	262
263	264
265	266
267	268
269	270
271	272
273	274
275	276
277	278
279	280
281	282
283	284
285	286
287	288
289	290
291	292
293	294
295	296
297	298
299	300
301	302
303	304
305	306
307	308
309	310
311	312
313	314
315	316
317	318
319	320
321	322
323	324
325	326
327	328
329	330
331	332
333	334
335	336
337	338
339	340
341	342
343	344
345	346
347	348
349	350
351	352
353	354
355	356
357	358
359	360
361	362
363	364
365	366
367	368
369	370
371	372
373	374
375	376
377	378
379	380
381	382
383	384
385	386
387	388
389	390
391	392
393	394
395	396
397	398
399	400
401	402
403	404
405	406
407	408
409	410
411	412
413	414
415	416
417	418
419	420
421	422
423	424
425	426
427	428
429	430
431	432
433	434
435	436
437	438
439	440
441	442
443	444
445	446
447	448
449	450
451	452
453	454
455	456
457	458
459	460
461	462
463	464
465	466
467	468
469	470
471	472
473	474
475	476
477	478
479	480
481	482
483	484
485	486
487	488
489	490
491	492
493	494
495	496
497	498
499	500
501	502
503	504
505	506
507	508
509	510
511	512
513	514
515	516
517	518
519	520
521	522
523	524
525	526
527	528
529	530
531	532
533	534
535	536
537	538
539	540
541	542
543	544
545	546
547	548
549	550
551	552
553	554
555	556
557	558
559	560
561	562
563	564
565	566
567	568
569	570
571	572
573	574
575	576
577	578
579	580
581	582
583	584
585	586
587	588
589	590
591	592
593	594
595	596
597	598
599	600
601	602
603	604
605	606
607	608
609	610
611	612
613	614
615	616
617	618
619	620
621	622
623	624
625	626
627	628
629	630
631	632
633	634
635	636
637	638
639	640
641	642
643	644
645	646
647	648
649	650
651	652
653	654
655	656
657	658
659	660
661	662
663	664
665	666
667	668
669	670
671	672
673	674
675	676
677	678
679	680
681	682
683	684
685	686
687	688
689	690
691	692
693	694
695	696
697	698
699	700
701	702
703	704
705	706
707	708
709	710
711	712
713	714
715	716
717	718
719	720
721	722
723	724
725	726
727	728
729	730
731	732
733	734
735	736
737	738
739	740
741	742
743	744
745	746
747	748
749	750
751	752
753	754
755	756
757	758
759	760
761	762
763	764
765	766
767	768
769	770
771	772
773	774
775	776
777	778
779	780
781	782
783	784
785	786
787	788
789	790
791	792
793	794
795	796
797	798
799	800
801	802
803	804
805	806
807	808
809	810
811	812
813	814
815	816
817	818
819	820
821	822
823	824
825	826
827	828
829	830
831	832
833	834
835	836
837	838
839	840
841	842
843	844
845	846
847	848
849	850
851	852
853	854
855	856
857	858
859	860
861	862
863	864
865	866
867	868
869	870
871	872
873	874
875	876
877	878
879	880
881	882
883	884
885	886
887	888
889	890
891	892
893	894
895	896
897	898
899	900
901	902
903	904
905	906
907	908
909	910
911	912
913	914
915	916
917	918
919	920
921	922
923	924
925	926
927	928
929	930
931	932
933	934
935	936
937	938
939	940
941	942
943	944
945	946
947	948
949	950
951	952
953	954
955	956
957	958
959	960
961	962
963	964
965	966
967	968
969	970
971	972
973	974
975	976
977	978
979	980
981	982
983	984
985	986
987	988
989	990
991	992
993	994
995	996
997	998
999	1000

Claimed as PBI

Figure 1. Injection Zone plume development through time: 1-year, 5-year, 10-year, 30-year (end of injection), 50-year, and 100-year post-injection.

Claimed as PBI

Figure 2a. Base case CO₂ well **Claimed as PBI** CO₂ global mole fraction distribution at 1 year, 5 years, 10 years, 30 years (projected end of injection), 50 years (since start of injection), and 100 years post-injection.

Claimed as PBI

Figure 2b. Base case CO₂ well **Claimed as PBI** CO₂ global mole fraction distribution at 1 year, 5 years, 10 years, 30 years (projected end of injection), 50 years (since start of injection), and 100 years post-injection.

Claimed as PBI

Figure 2c. Base case CO₂ well **Claimed as PBI** CO₂ global mole fraction distribution at 1 year, 5 years, 10 years, 30 years (projected end of injection), 50 years (since start of injection), and 100 years post-injection.

Claimed as PBI

Figure 2d. Base case CO₂ well **Claimed as PBI** CO₂ global mole fraction distribution at 1 year, 5 years, 10 years, 30 years (projected end of injection), 50 years (since start of injection), and 100 years post-injection.

Claimed as PBI

Figure 2e. Base case CO₂ well Claimed as PBI CO₂ global mole fraction distribution at 1 year, 5 years, 10 years, 30 years (projected end of injection), 50 years (since start of injection), and 100 years post-injection.

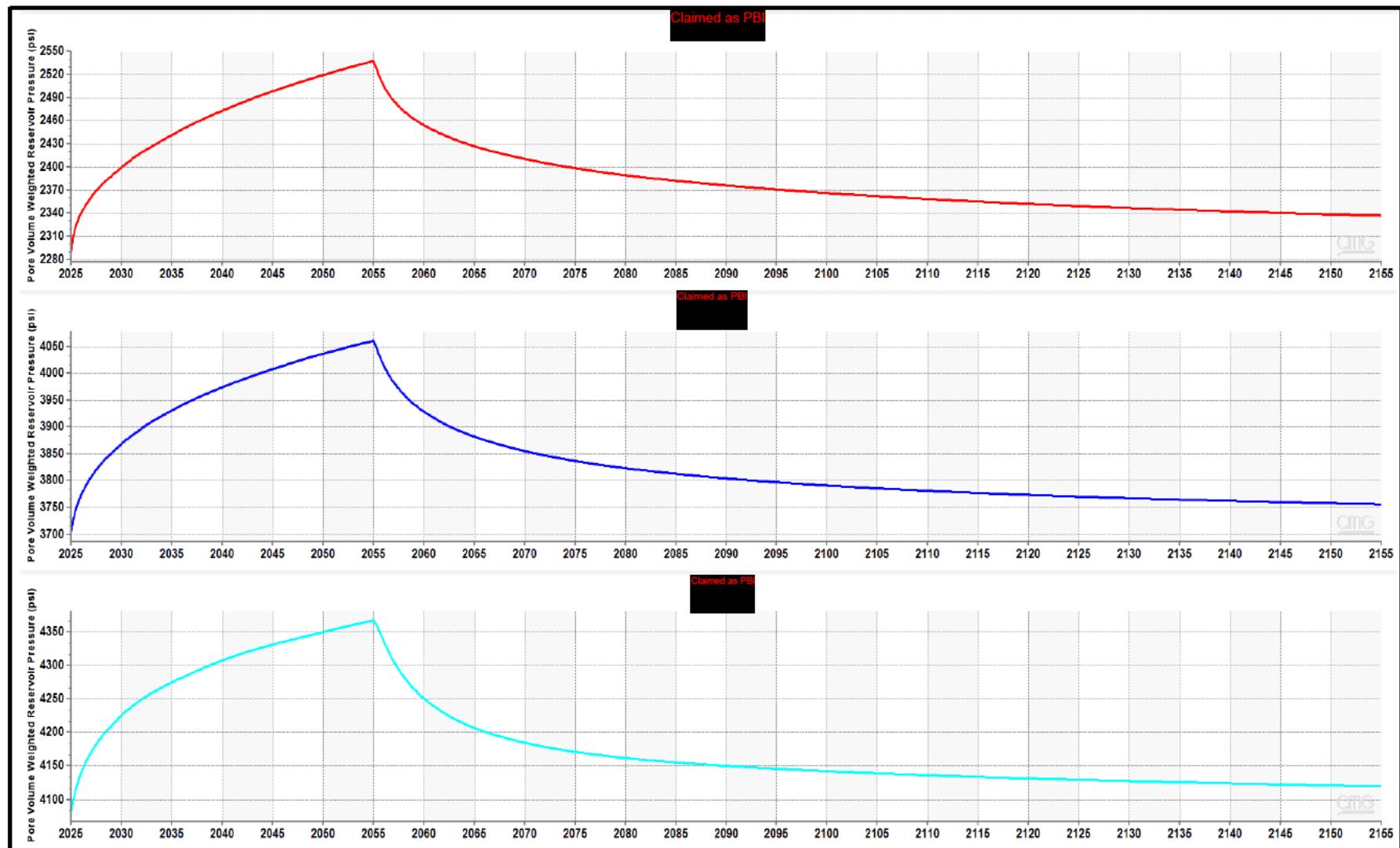

Claimed as PBI

Figure 2f. Base case CO₂ well **Claimed as PBI** CO₂ global mole fraction distribution at 1 year, 5 years, 10 years, 30 years (projected end of injection), 50 years (since start of injection), and 100 years post-injection.

Claimed as PBI

Figure 2g. Base case CO₂ well **Claimed as PBI** CO₂ global mole fraction distribution at 1 year, 5 years, 10 years, 30 years (projected end of injection), 50 years (since start of injection), and 100 years post-injection.

Average Reservoir Pressure in Approximate CO₂ Plume Area vs. Time

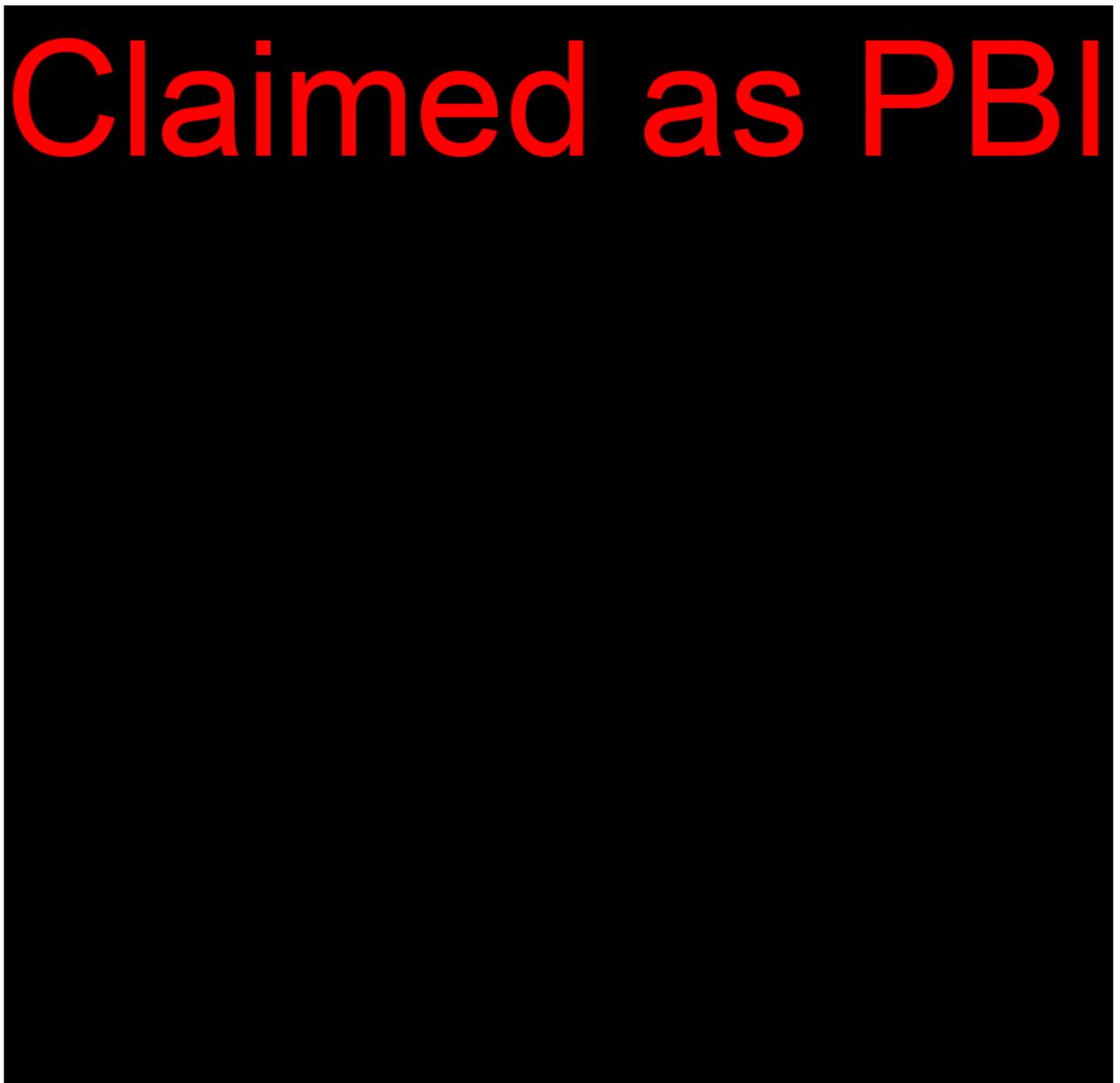
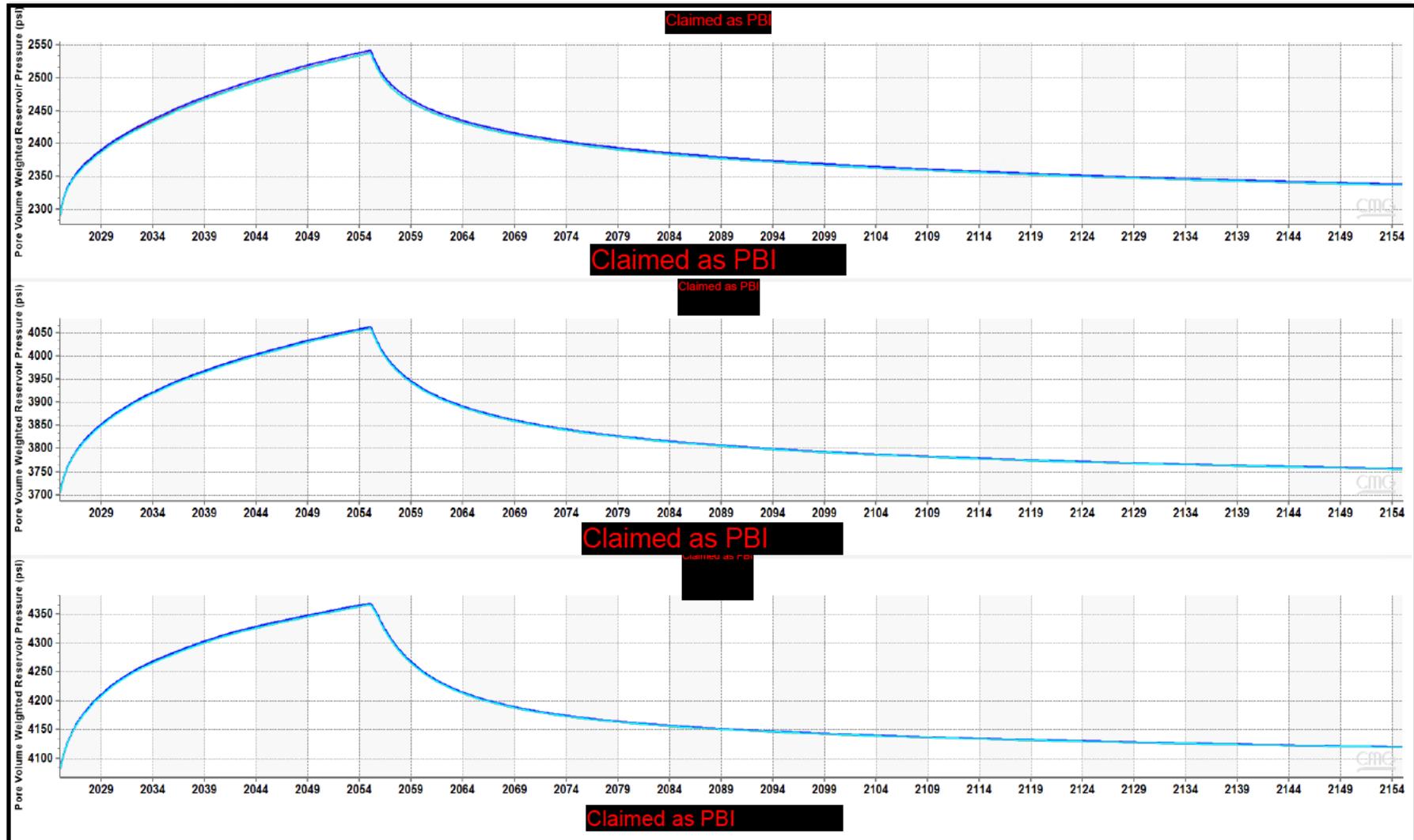


Figure 3. Base case CO₂ Average reservoir pressure within approximate plume area.

Claimed as PBI


Figure 4 CO₂ storage mechanisms in the reservoir

Claimed as PBI

Figure 5. CO₂ plume boundary for Injectate 1 case (light blue dash line), Injectate 2 case (light green dashed line), and Base case CO₂ (red). Larger pink outline is the model boundary. Minimal differences in plume boundaries are observed among the three cases, with boundaries generally overlying each other.

Average Reservoir Pressure in Approximate CO₂ Plume Area vs. Time

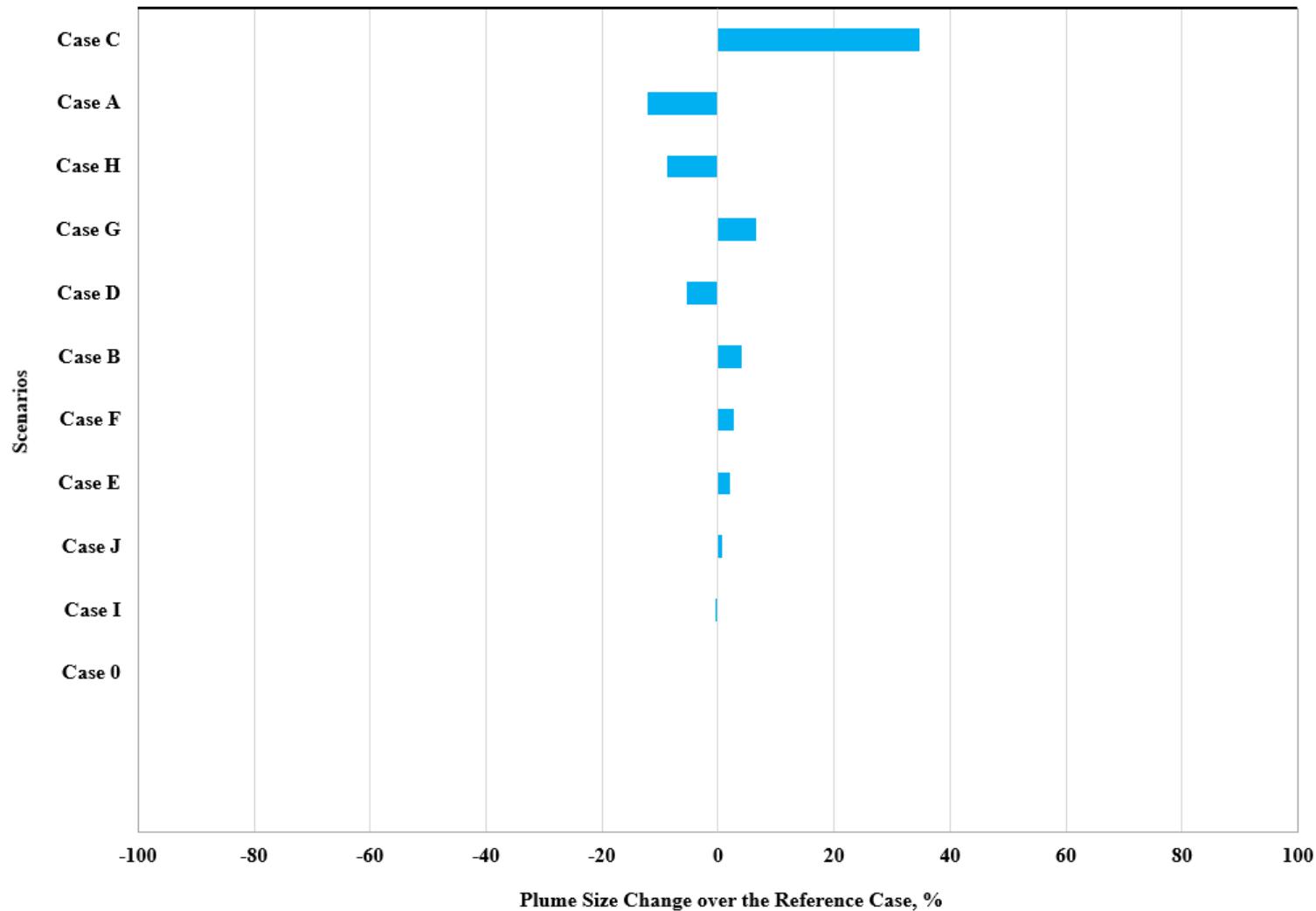


Figure 6. Average reservoir pressure within approximate plume area for Injectate 1, Injectate 2, and Base case (100% CO₂). Pressure trends for all cases plot almost on top of each other.

Claimed as PBI

Figure 7. Submitted plume boundary and CO₂ plume outlines for CASE A to CASE J vs. reference case (Case 0) with 100% CO₂. Larger red outline is model boundary. Minimal difference in plume boundaries for most scenarios except for Case C with extreme parameters. CO₂ plume is defined by 0.01 CO₂ global mole fraction cutoff 100 years post-injection. See **Table 1** for scenario descriptions.

Sensitivity Analysis Plume Size Tornado Chart

Figure 8. Injection Zone, Sensitivity analysis Tornado chart for plume size. See **Table 1** for scenario descriptions.

Claimed as PBI

Figure 9. Location of injection and monitoring wells.