

FINANCIAL ASSURANCE DEMONSTRATION
40 CFR 146.85

Facility Information

Facility Name: Pelican Renewables, LLC
Well Names: Rindge Tract CCS Well #1
Rindge Tract CCS Well #2

Facility Contact: John Zuckerman, Pelican Renewables – Managing Member
2200 W. Forest Lake Rd, Acampo, California, 95220
917-868-4346/john.zuckerman@pelicanrenewables.com

Well Locations: Rindge Tract Island, San Joaquin County, California
38.021507, -121.428926 (Well #1)
38.014567, -121.415405 (Well #2)

Pelican Renewables, LLC and its affiliates (Pelican) is providing financial responsibility pursuant to 40 CFR 146.85. Pelican will use a combination of Surety Bonds, Letters of Credit, Insurance, and other available financial instruments that may not yet have been developed for CCS given the maturity of the industry to cover the costs of: corrective action, emergency and remedial response, injection well plugging, post-injection site care, and site closure.

The total estimated costs for each activity, as developed by SCS Engineers (SCS) and provided by Pelican are presented below:

Summary of Costs	
Corrective Action:	\$1,546,000
Plugging Injection Well:	\$2,497,600
Post-Injection Site Care:	\$20,382,800
Site Closure:	\$1,207,900
Emergency and Remedial Response:	\$7,335,000
Total:	\$32,969,300

Introduction

Under 40 CFR 146.85(a), the U.S. Environmental Protection Agency (EPA) requires owners or operators to demonstrate and maintain financial responsibility for the following Geologic Sequestration (GS) activities:

- Performing corrective action on wells in the Area of Review (AOR)
- Injection well plugging
- Post-injection site care and site closure (PISC)
- Emergency and remedial response

This document was prepared to demonstrate that Pelican has the resources to allow third parties to carry out the activities needed to protect Underground Sources of Drinking Water (USDW) as required by 40 CFR 146.85(a). Pelican is applying for a Class VI permit for the proposed construction and operation of a carbon dioxide (CO₂) injection well at a site in the Rindge Tract Area of San Joaquin County in California. This third-party cost estimate was prepared in support of that application.

Activities Considered for Financial Responsibility

To demonstrate financial responsibility for the geologic sequestration of carbon dioxide by Pelican at the Rindge Tract site, SCS has considered the costs associated with:

- Corrective Action
- Plugging Injection Wells
- Post-injection Site Care
- Site Closure
- Emergency and Remedial Response

Basis of Cost Estimates

Pelican contracted with SCS to provide a third-party cost estimate for the financial responsibility activities required by EPA. SCS used the EPA's UIC Program Class VI Financial Responsibility Guidance as the basis to define the activities required to be included in the cost estimate. The costs of the required activities were then estimated using historic price data, costs extrapolated from subcontractors, and SCS' professional judgment on the time required from other projects of similar scope. Additionally, EPA's Geologic CO₂ Sequestration Technology and Cost Analysis document provided a foundation for costs without reasonably inferred or experiential data. The estimated costs are provided in US dollar valuation from October 2022 and reflect the costs of a previously uninvolved third party to complete the work. The unit costs encompass general and administrative costs with averaged overhead and profit percentages included.

SCS assumed the costs would be incurred via a third party without previous project knowledge and without the involvement of Pelican or SCS. The third party would be tasked with the listed activities to conclude the project in a manner protective of USDWs at no cost to the public. The cost assumptions also presume the third party would not continue the project and that injection would cease immediately.

Area of Review and Corrective Action

The estimated costs in this section outline potential risks and events that could endanger human health, the environment, or the safe functioning of infrastructure at the site as described in Section 5 - Emergency and Remedial Response Plan, of the accompanying permit application. The activities cover the periodic reevaluation of the AOR and the identification and remediation of newly identified deficient wells. For the purposes of this cost estimate, the initial study area was defined as an area of approximately 2,500 acres centered on the Rindge Tract CO₂ Storage Site,

Ridge Tract CCS Well #1. This area was defined with a computational model assuming injection of approximately 2.1 million metric tons of CO₂ annually for 20 years (total of 42,000,000 metric tons). Based on the model, the area covered by CO₂ plume after plume movement ceased would be contained within the 2,500-acre area. All deficient wells found in the initial AOR would be remediated before injection begins. Therefore, no cost is included to remediate deficient wells within the initial AOR.

As previously stated, this estimate assumes CO₂ injection ceased at (or would cease by) the time a third party took over responsibility for the injection well and storage site. For purposes of the cost estimate, a reevaluation of the AOR would occur at the time a third party took responsibility and then would occur once every five years during the 50-year post-injection period, the default frequency required by the Class VI regulations. Should the injection reservoir tracking data obtained over the five-year period deviate significantly from the predictions of the original (or updated) computational model, the model would be updated to reflect the actual measured shape and extent of the CO₂ plume and improve the accuracy of the predicted AOR. It is assumed this would only be necessary once.

Any newly identified wells are assumed to be either deficient wells within the initial AOR which were not discovered before injection, or deficient wells added because of adjustments to the AOR. Based on current modeling predictions by SCS, there are only two wells within the AOR that penetrate the confining zone within the first 10 years. This is a phased approach.

Table 4-1. Corrective Action Within the Area of Review

Item	Unit	Unit Cost	Total Cost
a. Well Integrity Testing	5 wells	\$70,000 per well	\$350,000
b. Plug Deficient Wells	3 well	\$280,000 per well	\$840,000
c. Rehabilitation of Existing Well for Reuse	1 well	\$280,000 per well	\$280,000
d. Project Management & Oversight	400 hours	\$190 per hour	\$76,000
Total:			\$1,546,000

Plugging Injection Wells

The estimated costs in this section cover the plugging of the single injection well post-injection. Site reclamation for the plugged sites is included in the assumptions as well.

The plugging and abandonment of the injection and Lowermost Underground Source of Drinking Water (LUSDW) wells includes mechanical integrity testing, plugging the hole with cement for the entire depth of the well, and cutting the well casing below the ground surface. All structures and appurtenances at the site of the injection well would be removed except for those directly necessary to the continued monitoring of the plume. Any surface facilities remaining for post-injection monitoring would be removed during site closure.

Well plugging and site remediation costs were estimated based on SCS' previous experience with the costs incurred or estimated by subcontractors for this and other projects.

Table 4-2. Plugging Injection Wells Summary

Item	Total Cost
a. Plugging Injection Wells (Table 4-3)	\$2,497,600
b. Citizen Access Improvement (Table 4-4)	\$514,000
Total:	\$3,011,600

Table 4-3. Plugging Injection Wells Detail

Item	Unit	Unit Cost	Total Cost
a. Casing Evaluation	2 wells	\$81,000 per well	\$162,000
b. Repair / Groundwater Cleanup	2 wells	\$41,000 per well	\$82,000
c. Plugging Materials	2 wells	\$815,000 per well	\$1,630,000
d. Labor & Equipment	2 wells	\$170,000 per well	\$340,000
e. Decontamination	2 wells	\$10,000 per well	\$20,000
f. Disposal	2 wells	\$5,000 per well	\$10,000
g. Contingencies	2 wells	\$50,000 per well	\$100,000
h. Project Management & Oversight	960 hours	\$160 per well	\$153,600
		Total:	\$2,497,600

Table 4-4. Citizen Access Improvement Detail

Item	Unit	Unit Cost	Total Cost
a. Demolition of Structure(s)	2 site	\$100,000 per site	\$200,000
b. Access Improvements	2 pads	\$125,000 per pad	\$250,000
c. Project Management & Oversight	400 hours	\$160 per hour	\$64,000
			Total: \$514,000

Post-Injection Site Care

The estimated costs in this section cover the tracking and modeling of the plume during the 50-year post-injection period.

The PISC activities include monitoring ground water quality and tracking the position of the carbon dioxide plume and pressure front for 50 years following the cessation of injection. Pelican will not cease post-injection monitoring until a demonstration of non-endangerment of USDWs has been approved by the UIC Program Director pursuant to 40 CFR 146.93(b)(3). Following approval for site closure, Pelican will plug all monitoring wells, restore the site to a condition to enhance outdoor access, and submit a site closure report and associated documentation.

The PISC costs were estimated based on SCS' previous experience with the costs incurred or estimated by subcontractors for this and other projects

Table 4-5. Post-Injection Care Summary

Item		Total Cost
a. Monitoring for Geochemical & Geophysical Analysis	(Table 4-6)	\$197,000
b. Mechanical Integrity Testing	(Table 4-7)	\$121,200
c. Site Management & EPA Reporting	(Table 4-8)	\$89,456
Annual Total:		\$407,656
50-year Total:		\$20,382,800

Table 4-6. Monitoring for Geochemical & Geophysical Analysis Detail

Item	Units	Unit Cost	Annual Cost
a. Monitoring Well Analysis (≤350 ft) (geochemical)	3 wells	\$5,000	\$15,000
b. Monitoring Well Analysis (>350 ft) (geochemical)	3 wells	\$11,000	\$33,000
c. Monitoring Well Analysis (>350 ft) (pressure, temperature, ERT)	3 wells	\$39,000	\$117,000
d. Project Management & Oversight	200 hours	\$160	\$32,000
Annual Total:			\$197,000
50-year Post-Injection Monitoring Total:			\$9,850,000

Table 4-7. Mechanical Integrity Testing Detail

Item	Units	Well Depth	Unit Cost	Annual Cost
a. Injection Well Monitoring	2 wells	6,950 ft	\$35,000	\$70,000
b. Project Management & Oversight	320 hours	-	\$160	\$51,200
Annual Mechanical Integrity Testing Total:				\$121,200
50-year Mechanical Integrity Testing Total:				\$6,060,000

Table 4-8. Site Management & EPA Reporting Detail

Item	Unit	Unit Cost	Total Cost
a. Review of existing plume model (every 5 yr)	100 hours	\$250 per hour	\$25,000
b. Remodel plume (once)	300 hours	\$250 per hour	\$75,000
c. Review of known wells & mines (every 5 yr)	120 hours	\$160 per hour	\$19,200
d. Record Keeping & Reporting	250 hours, annually	\$160 per hour	\$40,000
e. Project Management & Oversight	250 hours, annually	\$160 per hour	\$40,000
Annual Site Management & EPA Reporting Total:			\$89,456
50-year Site Management & EPA Reporting Total:			\$4,472,800

Site Closure

The costs in this section cover final closure of the project site. After the default 50-year post-injection and site care period and demonstrating the project no longer posed a risk of endangerment to any USDWs, the site would be permanently closed.

As in the previous sections, plugging of the LUSDW monitoring well includes mechanical integrity testing, plugging the hole with cement the entire depth of the well, and cutting the well off below the ground. All structures and appurtenances at the sites of the monitoring wells would be completely removed and the sites would be restored to enhance outdoor access.

Well plugging and site remediation costs were estimated based on SCS' previous experience with the costs incurred or estimated by subcontractors for this and other projects.

Table 4-9. Site Closure Summary

Item	Total Cost
a. Non-endangerment Demonstration (Table 4-10)	\$35,000
b. Monitoring Well Plugging (Table 4-11)	\$982,900
c. Documentation (Table 4-12)	\$190,000
Total:	\$1,207,900

Table 4-10. Non-endangerment Demonstration Detail

Item	Total Cost
a. Prepare non-endangerment demonstration report	\$35,000
Total Non-Endangerment Demonstration Detail:	\$35,000

Table 4-11. Monitoring Well Plugging Detail

Item	Unit	Unit Cost	Total Cost
a. Casing Evaluation	3 unit	\$40,000 per well	\$120,000
b. Review of Evaluation Results	3 unit	\$15,000 per well	\$45,000
c. Plugging Materials & Labor; 350 ft wells	3 unit	\$7,500 per well	\$22,500
d. Plugging Materials & Labor; 4,000 ft wells	3 wells	\$58,000 per well	\$174,000
e. Plugging Materials & Labor; 5,000 ft wells	3 wells	\$65,000 per well	\$195,000
f. Decontamination of Equipment	9 units	\$10,000 per well	\$60,000
g. Disposal of Equipment	9 units	\$5,000 per well	\$30,000
h. Citizen Access Improvement	2 pads	\$125,000 per pad	\$250,000
i. Project Management & Oversight	540 units	\$160 per hour	\$86,400
		Total:	\$982,900

Table 4-12. Documentation Detail

Item	Units	Unit Cost	Total Cost
a. Supervision & Documentation of Closure	2 units	\$95,000 total	\$190,000
Total Documentation Costs:			\$190,000

Emergency and Remedial Response

It was assumed the response to discovered CO₂ leaks, regardless of risk category, would be to plug leaks where possible, assess impacts to USDWs, and remediate any contamination of USDWs. These costs assume a maximum affected area of about 2 square miles. The extent and costs of treatment were adapted from Federal Remediation Technologies Roundtable website. The cost of study and well installation were derived from previous SCS experience. Costs for municipal water hook-up are not included as this scenario is deemed to be extremely unlikely, although the cost of remediation may make municipal water hook-up preferable. Also note that treatment costs can vary significantly depending on specific contaminants and their concentrations.

The costs of responding to catastrophic events assumed wide areas with groundwater impacted from CO₂ seeps which would require groundwater remediation and providing alternative water

supplies to affected residents. Detailed description of each event is in Section 5 - Emergency and Remedial Response Plan.

Table 4-16. Emergency and Remedial Response Costs

Response Actions for Emergency Scenarios		
Risk	Injection or Monitoring Well Integrity Failure	Cost
Minor	Verify integrity failure.	\$350,000
	Determine the cause and extent of failure.	\$120,000
	Identify and implement appropriate remedial action.	\$5,500,000
Serious	Implement site investigation to determine nature and extent, per the ERRP.	\$350,000
	Implement appropriate response, per the ERRP.	\$7,335,000
Risk	Migration of CO ₂ or Formation Fluid to a USDW	Cost
Serious	Initiate shutdown plan.	\$40,000
	Conduct Hall Plot analysis.	\$20,000
	Collect water quality data in monitoring wells.	\$60,000
	Plume delineation via three additional monitoring well pairs.	\$3,275,000
	Develop and implement remedial action.	\$2,500,000
	Obtain thermal UAV data and analyze for caprock breach, as necessary.	\$25,000
	Arrange for an alternate potable water supply, as necessary.	\$75,000
	Remediation/repair of failed borehole.	\$280,000
	Lower injection rate and monitor for decreasing CO ₂ /differential pressure.	\$10,000
	Identification of structural or confining zone failure.	\$210,000
Risk	Appropriate survey identifying plume migration extent.	\$75,000
Risk	Injection Well Monitoring Equipment Failure	Cost
Minor	Repair damaged wellhead and perform verification survey.	\$200,000
	Repair faulty mechanical or electrical components.	\$85,000
	Evaluate failure via well pressure, temperature, and annulus pressure.	\$39,000
Major	In the event of a well blowout, "kill" the well via pumping fluid.	\$120,000
Risk	Natural Disaster	Cost
Minor	Identify and implement appropriate stabilization procedures.	\$300,000
Serious / Major	Identify and implement appropriate stabilization procedures.	\$300,000
	Monitor possible failure via well pressure, temp., and annulus pressure.	\$35,000
	Determine the cause and extent of failure.	\$120,000

Table 4-16. Emergency and Remedial Response Costs (cont.)

Risk	Induced seismic event	Cost
Serious / Major	Review seismic and operational data.	\$20,000
	Identify and implement appropriate stabilization procedures.	\$300,000
	Analysis of monitoring, seismic, and reported felt event data.	\$80,000
	Implementation of ERRP Green Operating State, per Table 11-3.	no cost
	Implementation of ERRP Yellow Operating State, per Table 11-3.	\$1,000
	Implementation of ERRP Orange Operating State, per Table 11-3.	\$20,000
	Implementation of ERRP Magenta Operating State, per Table 11-3.	\$30,000
	Implementation of ERRP Red Operating State, per Table 11-3.	\$6,560,000

Summary of Costs

The total estimated costs associated for a third party to take corrective actions at the Pelican Rindle Tract CO₂ Storage Site are summarized below. The greatest amount estimated for a single emergency and remedial response action was used for the final category.

Summary of Costs	
Corrective Action:	\$1,546,000
Plugging Injection Well:	\$2,497,600
Post-Injection Site Care:	\$20,382,800
Site Closure:	\$1,207,900
Emergency and Remedial Response:	\$7,335,000
Total:	\$32,969,300