

WELL CONSTRUCTION PLAN
CTV I ELK HILLS 26R PROJECT

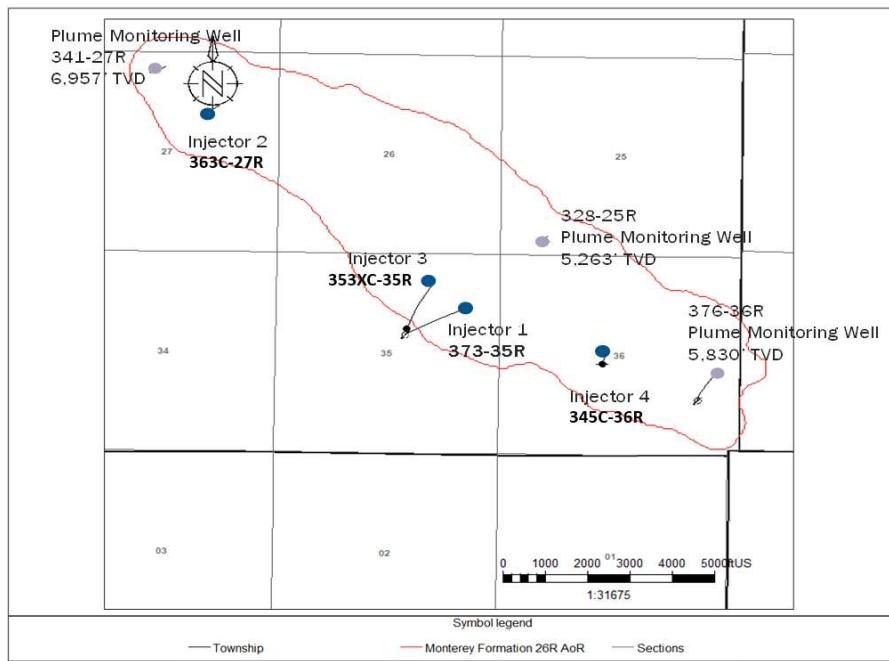
Injection Well 353XC-35R

Facility Information

Facility Name: Elk Hills 26R Storage Project

Facility Contact: Travis Hurst / Project Manager
28590 Highway 119
Tupman, CA 93276
(661) 342-2409 / Travis.Hurst@crc.com

Well location: Elk Hills Oil Field, Kern County, CA
35.32802963 / -119.5449982


Version History

File Name	Version	Date	Description of Change
Attachment G – COP Details_353XC-35R	1	05/31/22	Original document, combines well construction, operating procedures, and plugging plan into injection well narrative document.
Attachment G – COP Details_353XC-35R_V2	2	12/21/22	Revisions made based on questions received from the EPA 09/23/22
Attachment G – COP Details_353XC-35R_V3	3	1/11/23	Revisions made based on questions received from the EPA 01/06/23
Attachment G – COP Details_353XC-35R_V4	4	05/14/2023	Revisions made based on questions received from the EPA 03/2023
Attachment G – COP Details_353XC-35R_V5	5	11/29/2023	Separating Construction and Plugging Plans into Separate Attachments

Introduction

CTV requires four injection wells for the Elk Hills 26R Storage Project. CTV intends to drill three new CO₂ injection wells and repurpose one existing well for CO₂ injection. Figure 1 identifies the wells proposed for the project.

All planned new wells will be constructed with components that are compatible with the injectate and formation fluids encountered such that corrosion rates and cumulative corrosion over the duration of the project are acceptable. The proposed well materials will be confirmed based on actual CO₂ composition such that material strength is sufficient to withstand all loads encountered throughout the life of the well with an acceptable safety factor incorporated into the design. Casing points will be verified by trained geologists using real-time drilling data such as LWD and mud logs to ensure protection of shallow formations. No USDW is present within the AoR. However, surface and intermediate casing strings will provide multiple barriers of protection for shallow formation. Cementing design, additives, and placement procedures will be sufficient to ensure isolation of the injection zone and protection of shallow formations using cementing materials that are compatible with injectate, formation fluids, and subsurface pressure and temperature conditions.

Figure 1: Map showing the location of injection wells and monitoring wells.

Figure 3 and *Appendix: 26R Injection and Monitoring Well Schematics* document provides casing diagram figures for all injection with construction specifications and anticipated completion details in graphical and/or tabular format.

Injection wells will have wellhead equipment sufficient to shut off injection at surface. The project does not anticipate risk factors that warrant downhole shut-off devices, such as high temperature, high pressure, presence of hydrogen sulfide, proximity to populated areas, or high likelihood of damage to the wellhead.

Injection Well Construction

Construction of new injection and monitoring wells will occur during pre-operational testing. The drilling histories of nearby wells provide key information to drilling professionals and identify the expected conditions to be encountered. The wells will be constructed with objectives to achieve target CO₂ injection rates: to prevent migration of fluids out of the injection zone, to protect the shallow formations, and to allow for monitoring, as described by the following.

- Well designs will be sufficient to withstand all anticipated load cases including safety factors
- Multiple cemented casing strings will protect shallow formations from contacting injection fluid
- All casing strings will be cemented in place with volume sufficient to place cement to surface using industry-proven recommended practices for slurry design and placement
- Cement bond logging (CBL) will be used to verify presence of cement in the production casing annulus through and above the confining layer
- Mechanical integrity testing (MIT) will be performed on the tubing and the tubing/casing annulus
- Upper completion design enables monitoring devices to be installed downhole, cased hole logs to be acquired and MIT to be conducted
- All wellhead equipment and downhole tubulars will be designed to accommodate the dimensions necessary for deployment of monitoring equipment such as wireline-conveyed logging tools and sampling devices
- Realtime surface monitoring equipment with remote connectivity to a centralized facility and alarms provides continual awareness to potential anomalous injection conditions
- Annular fluid (packer fluid) density and additives to mitigate corrosion provide additional protection against mechanical or chemical failure of production casing and upper completion equipment

Well materials utilized will be compatible with the CO₂ injectate and will limit corrosion.

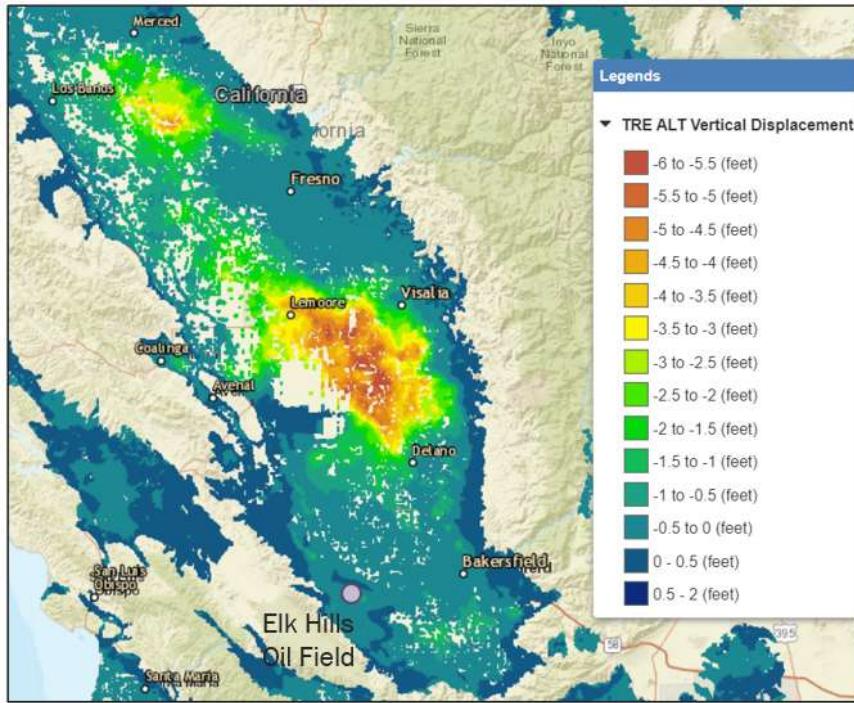
- Wellhead – stainless steel or other material consistent with accepted industry practices for corrosion mitigation based on injected CO₂ specification
- Casing – 13Cr L-80 or other corrosion resistant alloy in specified sections of production string (ie. flow-wetted casing)
- Cement – Portland cement has been used extensively in enhanced oil recovery (EOR) injectors. Data acquired from existing wells supports that the materials are compatible with CO₂ where good cement bond between formation and casing exists.
- Tubing – 13Cr L-80 or other corrosion resistant alloy
- Packer – corrosion resistant alloy and hardened elastomer

Well materials follow the following standards:

- API Spec 6/CT ISO 11960 – Specifications for Casing and Tubing
- API Spec 10A/ISO 10426-1 – Specifications for Cements and Materials for Cementing
- API Spec 11D1/ISO 14310 – Downhole Equipment – Packers and Bridge Plugs

Casing and Cementing

The casing specifications in Table 1 are sufficient to meet the requirements of 40 CFR 146.86(b)(1)(iv) and to allow for the safe operation at bottomhole injection conditions that will not exceed the maximum allowable operating pressure specified in the Operational Procedures section.


The 26R reservoir has been depleted and reservoir pressure is low. The temperature is approximately 210 degrees Fahrenheit. These conditions are not extreme, and CTV has extensive experience successfully constructing wells in depleted reservoirs. Standard cementing and casing best practices are sufficient to ensure successful placement and isolation. Industry standard practices and procedures for designing and placing primary cement in the casing annuli will be utilized to ensure mechanical integrity of cement and casing. Staged cementing is not an anticipated requirement.

Operational parameters acquired throughout the cementing operation will be used to compare modeled versus actual pressure and rate. The presence of circulated cement at surface will also be a primary indicator of effective cement placement. Cement evaluation logging will be conducted to confirm cement placement and isolation.

Table 1: Casing Specifications

Name	Depth Interval (feet)	Outside Diameter (inches)	Inside Diameter (inches)	Weight (lb/ft)	Grade (API)	Design Coupling (Short or Long Threaded)	Thermal Conductivity @ 77°F (BTU/ft hr, °F)	Burst Strength (psi)	Collapse Strength (psi)
Conductor	14' - 54'	20	19.124	94	H-40	Short	2.62	1530	520
Surface	14' - 2400'	9.625	8.835	40	L-80	Long	2.62	5750	3090
Long string	14' - 6300' 6300' - 6700'	7	6.276	26	L-80 L-80 CRA	Long	2.62	7240	5410
Liner	6400' - 8680'	4.5	3.92	13.5	L-80 CRA	Long	2.62	9020	8540

Subsidence in the San Joaquin Valley is largely attributed to groundwater extraction related to agricultural activities that has been exacerbated by recent drought conditions. There is no groundwater extraction within the area of the Elk Hills Oil Field. As shown in Figure 2, the ten-year subsidence map demonstrates no appreciable subsidence in the AoR. Therefore, subsidence does not pose a risk to well integrity within the storage project.

Figure 2: Subsidence in the Elk Hills Oil Field is -0.5 to 0 feet since 2015. Vertical displacement data for subsidence analysis is from the Sustainable Groundwater Management Act Data Viewer (<https://sgma.water.ca.gov/>).

Tubing and Packer

The information in the tables provided in the Tables 2 and 3 is representative of completion equipment that will be used and meets the requirements at 40 CFR 146.86(c). Tubing and packer selection and specifications will be determined prior to completion during pre-operational testing. A suitable corrosion-resistant alloy will be selected and installed once the CO₂ stream impurities and impurity concentrations have been determined. The packer setting depth refers to the center of the element, and the packer inner diameter refers to the ID of the packer mandrel.

At the beginning of CO₂ injection, CO₂ may be in direct contact with free phase water in the wellbore because of well work, until the free phase water is displaced into the formation. After initial displacement, no free phase water is expected in the wellbore. Tubing integrity is maintained with minimal and acceptable corrosive impact due to the CRA material selection and very limited duration of multi-phase injection.

Table 2: Tubing Specifications

Name	Depth Interval (feet)	Outside Diameter (inches)	Inside Diameter (inches)	Weight (lb/ft)	Grade (API)	Design Coupling (Short or Long Thread)	Burst strength (psi)	Collapse strength (psi)
Injection tubing	6,400	4.5	4.00	11.6	L-80 CRA	Premium	7,780	6,350

Table 3: Packer Specifications

Packer Type and Material	Packer Setting Depth (feet bgs)	Length (inches)	Nominal Casing Weight (lbs/ft)	Packer Main Body Outer Diameter (inches)	Packer Inner Diameter (inches)
Sealbore Packer, CRA	6,400	30.3	26 - 32	5.875"	4.00"

Tensile Rating (lbs)	Burst Rating (psi)	Collapse Rating (psi)	Max. Casing Inner Diameter (inches)	Min. Casing Inner Diameter (inches)
200,000	7,500	7,500	6.276	6.095

Annular Fluid

4% KCl completion fluid treated with corrosion inhibitor and biocide will be circulated in the tubing/casing annulus at the time of tubing installation. The corrosion inhibitor and biocide additives will be compatible with the wellbore environment and bottomhole temperatures to prevent internal corrosion of the 7" casing and external corrosion of the tubing.

Alarms and Shut-off Devices

As described in the Testing and Monitoring Plan, injection wells will be configured with real-time injection rates, injection pressure, and annular pressure monitoring and alarms. The Operating Procedures plan detail the maximum injection rate and pressure thresholds for alarms and shut-off devices.

A surface shut-off valve will be installed on the wellhead and configured with automation and communication to the Central Control Facility (CCF). The valve will be utilized by the CCF operator remotely to respond to an emergency by shutting in the well. The valve will be configured to automatically shut-in the well if tubing or annular alarm thresholds are exceeded.

The EPA Preamble to the Class VI Rule states (Federal Register Vol.75, No.237, p.77258): "EPA believes that requiring automatic surface shut-off devices instead of down-hole devices provides more flexibility to owners or operators when performing required mechanical integrity tests. Additionally, this requirement addresses concerns about risks associated with routine well workovers that may be complicated by the presence of down-hole devices while still maintaining USDW protection." For these reasons CTV will design 353XC-35R with a surface shut-off valve at the wellhead and not a down-hole device.

Pre-Injection Testing Plan

The following tests and logs will be acquired during drilling, casing installation and after casing installation in accordance with the testing required under 40 CFR 146.87(a), (b), (c), and (d). The testing activities described in this attachment are restricted to the pre-injection phase. Testing and

monitoring activities during the injection and post-injection phases are described in the Testing and Monitoring document.

Deviation Checks

Deviation measurements will be conducted approximately every 120' during construction of the well.

Tests and Logs

The following logs are expected to be acquired during the drilling or prior to the completion of 353XC-35R:

- Dual Induction Laterolog
- Spontaneous Potential
- Gamma Ray
- Caliper
- Compensated Neutron
- Formation Density
- Mud Log
- Acoustic Cement Bond Log

Demonstration of mechanical integrity

Table 4: Summary of tests to be performed prior to injection

Class VI Rule Citation	Rule Description	Test Description	Program Period
40 CFR 146.89(a)(1)	MIT - Internal	SAPT	Prior to operation
40 CFR 146.87(a)(4)	MIT - External	Temperature Log	Prior to operation

CTV will notify the EPA at least 30 days prior to conducting the test and provide a detailed description of the testing procedure. Notification and the opportunity to witness these tests/logs shall be provided to EPA at least 48 hours in advance of a given test/log. The mechanical integrity testing procedures are described in the Testing and Monitoring document.

Annulus Pressure Test Procedures

1. The tubing/casing annulus (annulus) will be filled with liquid. The volume of fluid required will be measured.
2. Temperature stabilization of the well and annulus liquid is necessary prior to conducting the test.
3. After stabilization, the annulus of the well will be pressurized to a surface pressure of no less equal to or greater than the highest annular pressure specified in the Operating Procedures document. Following pressurization, the annular system must be isolated from the source (annulus tank) by a closed valve.

4. The annulus system must remain isolated for a period of no less than 60 minutes. During the period of isolation, measurements of pressure will be made at ten-minute intervals.

CTV will notify the EPA at least 30 days prior to conducting the test and provide a detailed description of the testing procedure. Notification and the opportunity to witness these tests/logs shall be provided to EPA at least 48 hours in advance of a given test/log.

Injectivity and Pressure Fall-Off Testing for Injection Wells

The benefit of completing a pressure fall-off test is to assess injectivity, reservoir flow boundary distances and reservoir pressures. CTV will complete injectivity and pressure fall off testing prior to CO₂ injection, pursuant to 40 CFR §146.87(e).

CTV will consider pressure fall-off testing throughout the injection phase to complement reservoir monitoring if injection rate decreases along with a simultaneous injection pressure increase outside the results from computational modeling.

Pressure fall-off testing procedures are described below:

1. Injection rate will be held constant prior to shut in. The injection rate will be high enough to produce a pressure buildup that will result in valid test data. The maximum operating pressure will not be exceeded.
2. Upon shutting in the injector, surface and bottom-hole pressure and temperature measurements will be taken continuously. If there are offset injectors, rates will be held constant and recorded during the test.
3. The fall-off portion of the test will be conducted for a length of time sufficient that the pressure is no longer influenced by wellbore storage or skin.

A surface gauge at the wellhead and a downhole gauge set above the packer with real-time surface readout capability will be used for the pressure falloff test. Each gauge will meet or exceed ASME B 40.1 Class 2A that provides 0.5% accuracy.

Objectives for Pre-Operational Testing

Based on the site characterization, AoR delineation modeling, and testing and monitoring evaluations, EPA has identified the following objectives for the planned pre-operational testing to address data gaps identified during the reviews. This information is summarized below (along with the planned tests that will address each data need that was described in the initial permit application materials submitted in November 2021) for reference and to clarify EPA's expectations for the updated materials that CTV must submit pursuant to 40 CFR 146.82(c) and 146.87.

Regional Geology and Geologic Structure

- Perform pressure build-up testing (anticipated testing method: pressure build-up test).
- Confirm the fracture pressure of the injection and confining zones (anticipated testing method: step-rate test in each zone using a representative fluid).

Geochemistry/Geochemical Data

- Establish baseline geochemistry for the Monterey Formation, as well as the Tulare and Etchegoin Formations for all analytes to be monitored during injection operations, per the Testing and Monitoring Plan (anticipated testing methods: various geochemical analyses).

Seismic History and Seismic Risk

- Establish baseline seismicity (anticipated testing method: existing seismic network/historic seismicity database).

Facies Changes in the Injection or Confining Zones

- Determine if there are any heterogeneities within the Monterey 26R injection zone that could affect its suitability for injection, including facies changes that could facilitate preferential flow (anticipated testing methods: pressure build-up test; planned and completed core, log, and seismic analysis).

CO2 Stream Compatibility with Subsurface Fluids and Minerals

- Confirm the composition and water content of the CO2 injectate as part of baseline sampling and verify that it will not react with the formation matrix (anticipated testing methods: various geochemical analyses, benchtop studies).
- Confirm that the properties of the CO2 stream are consistent with the AoR delineation model inputs (anticipated testing methods: various geochemical analyses).
- Confirm that the analytes for injectate and ground water quality monitoring are appropriate based on the results of the geochemical modeling evaluation (anticipated testing methods: various geochemical analyses).

Confining Zone Integrity

- Collect baseline pressure data in the Etchegoin Formation to support upward confinement between the Monterey and shallower formations (anticipated testing method: pressure build-up test).
- Determine the porosity and permeability of the Reef Ridge Shale at the location of each of the 26R project wells (anticipated testing methods: core and log data during well drilling).
- Test for changes in capillary entry pressure of the Reef Ridge Shale due to reaction of the shale with the injectate (anticipated testing method: mercury injection capillary pressure).

Injection Well Construction

- Following the pre-construction measurement of the composition, properties, and corrosiveness of the injectate, review the well construction materials and cement in the context of the results of these tests (anticipated testing methods: various geochemical analyses).

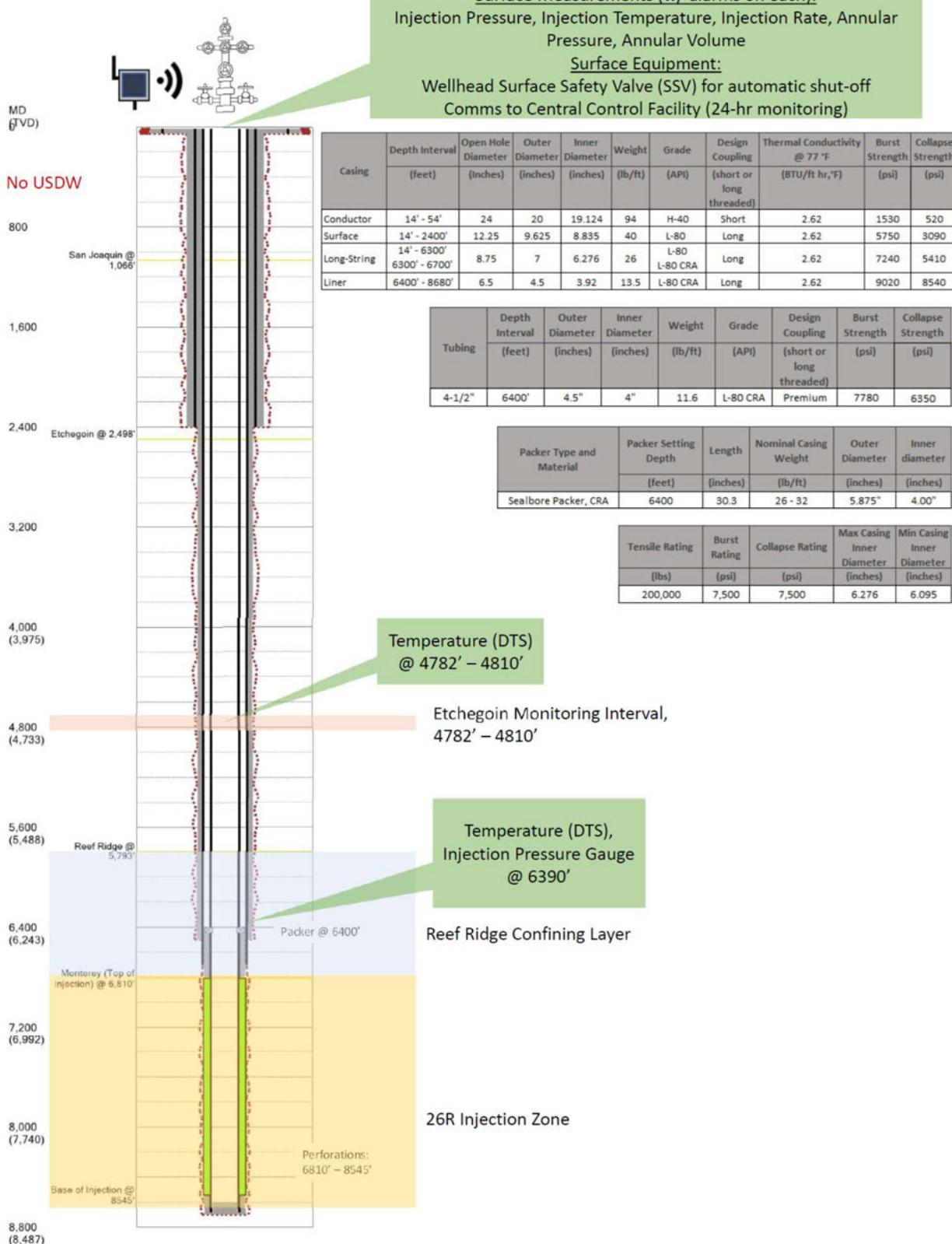


Figure 3: Injection Well 353XC-35R, CO₂ Injection Schematic