

PRE-OPERATIONAL TESTING PROGRAM

Project Name: Tri-State CCS Redbud 1

Facility Information

Facility contact: Tri-State CCS, LLC
14302 FNB Parkway
Omaha, NE 68154
402-691-9500

Well location: Fairhaven, Hancock County, West Virginia

Well Name	Latitude	Longitude
TR1-1	40.59722582	-80.5716718
TR1-2	40.55529898	-80.6001

Table of Contents

List of Figures	2
List of Tables	2
List of Acronyms	3
1. Introduction.....	4
2. Pre-Injection Testing Plan – Injection and Observation Wells.....	7
2.1. Deviation Checks.....	7
2.2. Well Logs.....	7
2.2.1. Open Hole Logs.....	7
2.2.2. Cased Hole Logs.....	8
2.3. Cores	10
2.4. Fluid Sampling.....	11
2.5. Demonstration of mechanical integrity.....	12
2.5.1. Annulus Pressure Test Procedures for Injection and Monitoring Wells:	13
2.6. Fracture Pressure of Injection and Confining Zone.....	14
2.7. Hydrogeologic Testing.....	14
2.7.1. Pressure Fall-Off Test Procedures:	15
2.8. Schedule.....	16
2.9. Reporting.....	16
3. References.....	17

List of Figures

Figure 1: Locations of proposed injection and observation wells at Tri-State CCS Redbud 1	6
---	---

List of Tables

Table 1: List of all wells for Tri-State CCS Redbud 1	4
Table 2: Wireline logging program for TR1-1, TR1-2, TR1-IOB-1, and TR1-IOB-2.....	9
Table 3: Planned sidewall core collection by formation in TR1-1 and TR1-2. Exact number of cores per interval is subject to change based on wireline logging results.	11
Table 4: Summary of analytical and field parameters for fluid sampling in the LIC and MTIC.	11
Table 5: Summary of planned MITs and other tests prior to injection.....	12
Table 6: Composite injectivity evaluation testing program.....	15

List of Acronyms

AOB - (#)	Above-Zone Observation Well number
AoR	Area of Review
CBL	Cement Bond Log
CCS	Carbon Capture and Storage
CO2	Carbon Dioxide
EPA	Environmental Protection Agency
ft	Feet
FTS	Flow Through Sampler
Grp	Group
IOB - (#)	In-Zone Observation Well Number
LIC	Lockport Injection Complex
MEM	Mechanical Earth Model
MIT	Mechanical Integrity Test
MTIC	Medina-Tuscarora Injection Complex
NMR	Nuclear Magnetic Resonance
PFO	Pressure Fall-Off
psi/psig	Pounds Per Square Inch, Gauge
psia	Pounds Per Square Inch, Absolute
psi/ft	Pounds Per Square Inch per Foot
SAPT	Standard Annular Pressure Test
SP	Spontaneous Potential
TBD	To Be Decided
TR1- (#)	Tri-State CCS Redbud 1 injection well number
TVD	True Vertical Depth
UIC	Underground Injection Control
UOB - (#)	Underground Source of Drinking Water Observation Well Number
USDW	Underground Source of Drinking Water
XRD	X-Ray Diffraction

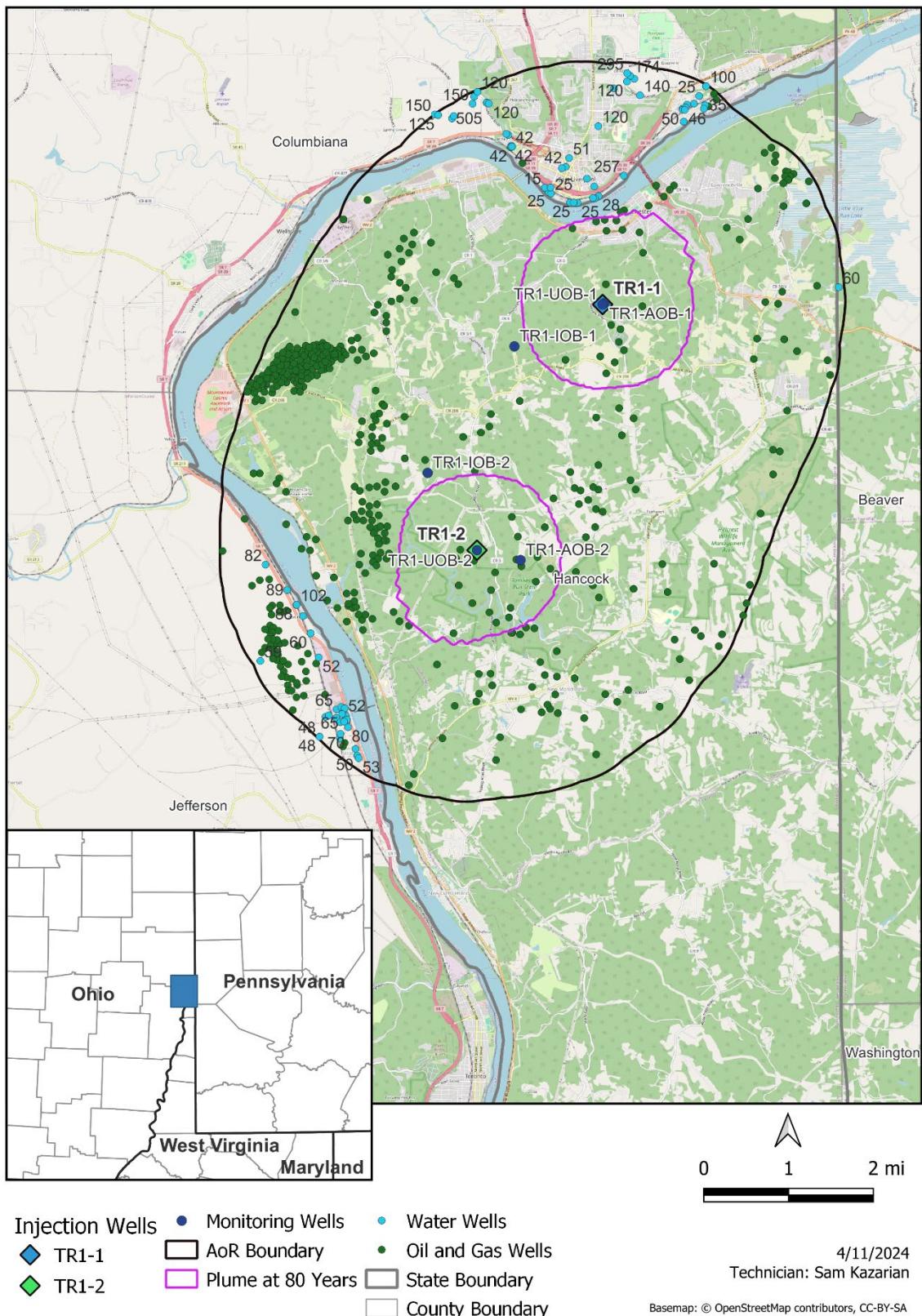
1. Introduction

Tri-State CCS, LLC plans to drill two injection wells (TR1-1 and TR1-2), both targeting two injection intervals (Lockport Injection Complex (LIC) and Medina Injection Complex (MIC)), at Tri-State CCS Redbud 1 in Hancock County, West Virginia (the “project”; Figure 1). This Pre-Operational Testing Program will be implemented to obtain the chemical and physical characteristics of the injection and confining zones and to meet the testing requirements of 40 CFR 146.87 and the well construction requirements of 40 CFR 146.86. This program will include a combination of logging, coring, formation hydrogeologic testing (e.g., a pump test and/or injectivity tests), and other activities during the drilling and construction phases of the project’s proposed observation and CO₂ injection wells listed in Table 1 and shown in Figure 1.

Table 1: List of all wells for Tri-State CCS Redbud 1¹.

Well Types	Well Acronym	CCS System Zone	Zone Formation	Zone Depth (ft MD)	Quantity
Shallow Groundwater (GW)	TR1-GW-1, TR1-GW-2	Shallow USDW	Pennsylvanian	TBD	Up to 2
Deep Observation (UOB)	TR1-UOB-1, TR1-UOB-2	Lowermost USDW	Mauch Chunk Formation	~ 650	2
Above-Zone Observation (AOB)	TR1-AOB-1, TR1-AOB-2	1 st Permeable Zone	Oriskany Fm	~ 4830, ~ 4850	2
In-Zone Observation (IOB)	TR1-IOB-1, TR1-IOB-2	Reservoir	Lockport Grp.	~ 6350, ~ 6100	2
			Medina Grp.	~ 6940, ~ 6700	
Injection	TR1-1, TR1-2	Reservoir	Lockport Grp.	~ 6550, ~ 6300	2
			Medina Grp.	~ 6940, ~ 6700	

The Pre-Operational Testing Program will determine or verify the depth, thickness, mineralogy, lithology, porosity, permeability, and geomechanical information of the primary confining zone (Salina Grp.), the secondary confining zone (Bass Island Dolomite/ Helderberg Grp.), and the injection intervals (Lockport Dolomite Grp. and Medina Grp.). In addition, formation fluid characteristics will be obtained from both the Lockport Dolomite Group and Medina Group to establish baseline data against which future measurements may be compared after the start of injection operations. A total of ten injection and observation wells will be drilled (Table 1). The stratigraphic test well associated with the CarbonSAFE project will be repurposed as an above zone monitoring well (TR1-AOB-2). Apart from TR1-AOB-2, a new TR1-AOB-1 well will be used to obtain site characterization data for the project. In addition, an extensive well logging program will be implemented in the injection and in-zone observation wells along with a coring


¹ TR1=Tri-State CCS Redbud 1

program in the injection wells. The results of the testing activities, including interpretation work, will be documented in separate reports for TR1-1 and TR1-2 and submitted to the UIC Program Director. Per U.S. EPA guidance, Tri-State CCS, LLC will submit these reports within 60 days after completion of each injection well (U.S. EPA, 2018).

Tri-State CCS, LLC will take sidewall core and acquire logs from TR1-1 and TR1-2. Tri-State CCS, LLC will bypass taking whole-core from the planned injection and in-zone observation wells due to the anticipated availability of significant core data from the CarbonSAFE stratigraphic test well, which will be repurposed as TR1-AOB-2 for the project.

Similarly, injection fall-off testing would be conducted in TR1-1 and TR1-2. These tests are used to determine reservoir and confining unit fracture gradients. Detailed geomechanical information gained from core and log analysis will be input into a 1-dimensional Mechanical Earth Model (1-D MEM) to provide understanding of formation mechanical properties and fracture gradients of the formations within Lockport Dolomite Group and Medina Group and their corresponding confining units.

The remainder of this page intentionally left blank.

Figure 1: Locations of proposed injection and observation wells at Tri-State CCS Redbud 1.

Tri-State CCS, LLC will rely on information from geologic and petrophysical tests in the observation wells (TR1-AOB-1, TR1-AOB-2) as well as TR1-1 and TR1-2 to satisfy the Class VI rule requirements for drilling and constructing injection wells. Tri-State CCS, LLC will use the Salina Group, Lockport Dolomite Group, Rochester Shale Formation, Medina Group, and Queenston Shale Formation sidewall core samples collected from TR1-1 and TR1-2 to satisfy the requirement of 40 CFR 146.87(b).

Note that the testing activities at the identified wells described in this plan are restricted to the pre-injection phase. Testing and monitoring activities during the injection and post-injection phases are described in the project's Testing and Monitoring Plan, along with other non-well related pre-injection baseline activities such as geochemical monitoring.

2. Pre-Injection Testing Plan – Injection and Observation Wells

This section describes the tests, core collection, and logging activities that will be conducted during drilling and casing installation and after casing installation in accordance with the testing required under 40 CFR 146.87(a), (b), (c), and (d).

2.1. Deviation Checks

Deviation measurements (single shot survey) will be conducted approximately every 500 feet during construction of the well [W. Va. Code R. § 39-1-4].

2.2. Well Logs

Open-borehole logs will be collected in TR1-1 and TR1-2 to obtain in-situ structural, stratigraphic, physical, chemical, and geomechanical information for the confining zones and the injection zones. Logs, surveys, and tests will be used to ensure conformance with the injection well construction requirements according to 40 CFR 146.86 and establish accurate baseline data for future comparison. Open-borehole characterization logs will be obtained after reaching the surface casing point within long-string casing point (i.e., total borehole depth) in the vertical borehole.

Wireline logging will be completed in all injection (TR1-1, TR1-2) and in-zone observation (TR1-IOB-1, TR1-IOB-2) wells to verify depth placement of the injection and monitoring intervals. A description of each logging method that will be included in the logging program for TR1-1, TR1-2, TR1-IOB-1, and TR1-IOB-2 is as follows:

2.2.1. Open Hole Logs

- **Geologic Description (Mud Log)** – Provides a continuous visual description of the drill cuttings-based lithology of the formations as the well is drilled. Physical cuttings sample datasets are typically collected and cataloged every 20-50 ft for future assessment. Mud logs are also used to evaluate any hydrocarbon or natural gas shows encountered while drilling the well.
- **Triple Combination** – Includes gamma-ray/spontaneous potential, porosity, and resistivity logs.
- **Acoustic Log (i.e., Dipole Sonic)** – This acoustic log measures elastic properties axially, radially, and azimuthally to support geomechanical, geophysical, fractures, and

petrophysical modeling. Furthermore, sonic logs, like compressional sonic (DT), can be used along with density logs for preparing synthetic seismic logs.

- **High Resolution Resistivity Imaging Tool** – Provides micro-resistivity formation images when using water-based mud. Borehole images can reveal bedding planes and associated contacts, fractures (open, healed, and induced), and reservoir textures (sedimentary structures). A multi-arm caliper run with this tool provides information on hole shape and is used for subsurface stress analysis. The tool also provides borehole inclination and azimuthal information which complement the deviation check surveys taken while drilling the well.
- **Nuclear Magnetic Resonance** – This log provides nuclear magnetic resonance (NMR) measurements of the buildup and decay of the polarization of hydrogen nuclei (protons) in the liquids contained in the pore space of rock formations. One key measurement provided by this log is the total formation porosity. Permeability and effective porosity can be estimated from the free-fluid to bound-fluid ratio and the pore-size distribution. NMR measurement can also be used for fluid identification because this log also provides a hydrogen index measurement.
- **Pulsed Neutron Spectroscopy** – This logging tool is used for measurements and definitions of mineralogy and matrix properties of injection and confining zones. The data from spectroscopy logging can be used to estimate mineral-based permeability, determine well-to-well correlations from geochemical stratigraphy, and determine sigma matrix for case hole and open hole sigma saturation analysis, among others. Elemental analysis or similar processing of these logs yields the volumetric proportions of mineral composition and pore fluids. For example, these logs can reveal the relative proportions of clay minerals, quartz, calcite, and fluid volume in the formation.
- **Wireline Formation Testing** – This wireline tool suite has the capacity to collect reservoir pressure measurements, static fluid levels, and fluid samples that can be kept at formation pressures representative of downhole conditions. The tool can also be run to conduct a *mini-frac* test. These tests provide fracture pressure estimates and far field stress directions (in conjunction with the formation micro imager). Wireline test data can be used as calibration for other stress measurements (sonic logs).
- **Caliper Log** – This tool provides a continuous measurement of the size and shape of a borehole along its depth. The measurements that are recorded can be an important indicator of washouts, cave-ins, or shale swelling in the borehole, which are instrumental in processing and interpreting the results of other well logs.

2.2.2. Cased Hole Logs

- **Ultrasonic Imaging Tool** – This log can provide estimates of well integrity and zonal isolation through measurement of cement acoustic impedance. The information from this log can be used to create maps of the casing integrity and cement, to identify corrosion or casing damage, and determine if there is solid (cement), liquid, or gas in between the casing and formation. Modern acoustic cement-evaluation tools, such as ultrasonic logs, are comprised of monopole (axisymmetric) transmitters (one or more) and receivers (two or more). They operate on the principle that acoustic amplitude is rapidly attenuated in good cement bond but not in partially bonded or free pipe. The ultrasonic tool can also provide a casing thickness interpretation.

- **Cement Bond Log (CBL)** – CBL tools use sonic waves to interrogate the integrity of the well's cement. CBLs use acoustic transmitters and receivers to measure signal attenuation to provide a measure of how well the casing and the cement are bonded. CBLs provide an indication of the cement-to-formation bond in the form of a variable density log. Typically, CBLs provide an average measurement, but they can also provide maps where logging tools with multiple transmitters and receivers on pads are used.
- **Temperature Logging Surveys** – The temperature log provides a subsurface temperature profile necessary for characterizing in-situ conditions. Temperature logging is used to identify the top of cement after cementing to help ensure wellbore integrity.

Table 2 lists the various Surface and Long String Casing wireline logging tools that will be deployed in TR1-1, TR1-2, TR1-IOB-1, and TR1-IOB-2.

Table 2: Wireline logging program for TR1-1, TR1-2, TR1-IOB-1, and TR1-IOB-2.

Depth Interval (ft)	Log	Purpose/Comments
<i>Surface Casing</i>		
0 – 1,800	Mud Log	Monitor and ensure uninterrupted drilling process as well as provide lithologic information while drilling
0 – 1,800 [Cased Hole]	Temperature Log	Determine natural geothermal gradient outside well for comparison to future temperature logs for external mechanical integrity evaluations. Baseline log is run a minimum of 30 days after drilling and casing/ cementing the well because temperature anomalies due to circulation of drilling fluid and/or open-borehole injection testing will persist for several weeks to months.
0 – 1,800	Spectral Gamma/ Porosity/ Density/ Resistivity (Triple Combination)	Characterize basic geology (Lithology, formation tops, porosity, etc.)
0 – 1,800 [Cased Hole]	Cement Bond Log	Evaluate cement integrity
<i>Long String Casing</i>		
1,800-7,100	Mud Log	Monitor and ensure an uninterrupted drilling process as well as provide lithologic information while drilling
1,800-7,100	Borehole Profile/Caliper	Evaluate borehole condition prior to cementing
1,800-7,100 [Cased Hole]	Temperature Log	Determine natural geothermal gradient outside well for comparison to future temperature logs for external mechanical integrity evaluations. Baseline log is run a minimum of 30 days after drilling and casing/ cementing the well because temperature anomalies due to circulation of drilling fluid and/or open-borehole injection testing will persist for several weeks to months.

Depth Interval (ft)	Log	Purpose/Comments
1,800-7,100	Spectral Gamma/ Porosity/ Density/ Resistivity (Triple Combo)	Characterize basic geology (Lithology, formation tops, porosity, etc.)
1,800-7,100	Pulsed Neutron Spectroscopy	Characterize basic geology (Gamma Ray, Resistivity, Porosity, Mineralogy)
1,800-7,100	Nuclear Magnetic Resonance Tool	Enhanced characterization of geologic and geomechanical properties that control injectivity and caprock/seal integrity.
1,800-7,100	Formation Micro Imager	Enhanced characterization of geologic and geomechanical properties that control injectivity and caprock/seal integrity.
1,800-7,100	Wireline Formation Testing	Used to characterize downhole formation fluids and reservoir pressures at selected locations of interest
1,800-7,100	Dipole Sonic	Determine the reservoir fracture pressure gradient and geomechanical properties of the confining and injection zones
1,800-7,170 [Cased Hole]	Cement Bond Log/Ultrasonic	Evaluate cement integrity, internal and external casing condition

2.3. Cores

Tri-State CCS, LLC is planning to obtain whole core from the CarbonSAFE stratigraphic test well, which will be repurposed as TR1-AOB-2. This whole core and rotary sidewall core analysis of samples will be used to evaluate the project's proposed injection and confining intervals. The whole core will have had extensive testing performed on it and, due to its location in the AoR and proximity to the injection wells, should be representative of the project. Therefore, whole core is not planned to be collected for the proposed injection wells.

Tri-State CCS, LLC will attempt to collect approximately 50 rotary sidewall cores in TR1-1 and TR1-2. The planned distribution of these 50 sidewall cores is provided in Table 3. The exact number of cores per interval and per well is subject to change based on wireline logging results. These sidewall cores will be preserved on-site and shipped to a commercial core testing/analysis laboratory for analysis. Properties analyzed will include routine core analysis (porosity, permeability, grain density, and residual fluid saturation). Specialized core analysis, including X-ray diffraction (XRD) for mineralogical analysis and capillary pressure, will be conducted on selected whole core samples. If the wireline formation tests fail to determine injection and confining zone mechanical properties, core plug mechanical property tests (e.g., triaxial tests) may be conducted to determine these properties and to estimate fracture pressure. The wireline and/or core mechanical property results will be used to calibrate wireline logs.

Table 3: Planned sidewall core collection by formation in TR1-1 and TR1-2. Exact number of cores per interval is subject to change based on wireline logging results.

Formation	# of Core Plugs
Salina Group	5
Lockport Dolomite Group	15
Rochester Shale Formation	5
Medina Group	20
Queenston Shale	20
TOTAL	50

2.4. Fluid Sampling

The analysis of reservoir fluid samples will be used to satisfy the requirement of 40 CFR 146.87(c) and ensure that baseline geochemical properties are established for the LIC and MIC in the AoR. Tri-State CCS, LLC will collect fluid samples from TR1-1 and TR1-2 for the two injection zone formations. Any fluids introduced into the formation during drilling, borehole conditioning, cementing, perforation acid treatment, and/or formation (injection) testing would first need to be removed before representative formation fluid samples can be collected. Consequently, Tri-State CCS, LLC will attempt to collect fluid samples during the active drilling phase using a Wireline Formation Testing tool rather than collect samples after well completion. The in-zone fluid samples from injection wells will be collected using a formation testing tool while the hole is open. If fluid samples cannot be taken via the formation testing tool, fluid samples can be collected after well completion by swabbing fluid or pumping through tubing with a packer set just above the perforated interval. After an appropriate volume of fluid is swabbed from the well, samples can be taken via a slickline deployed tool, such as a Kuster Flow Through Sampler (FTS) or equivalent. Both fluid sampling methods will sample reservoir pressure and static fluid levels.

The analytic and field parameters for fluid sampling are presented in Table 4. These parameters are consistent with the fluid sampling analysis and processes that are detailed in the Testing and Monitoring Plan and the Quality Assurance Surveillance Plan associated with this permit.

Table 4: Summary of analytical and field parameters for fluid sampling in the Lockport Dolomite and Medina Groups.

Parameters	Analytical Methods
Cations: Al, Ba, Mn, As, Cd, Cr, Cu, Pb, Sb, Se, and Tl	ICP-MS, EPA Method 6020B (U.S. EPA, 2014a) or EPA Method 200.8 (U.S. EPA, 1994a)

Parameters	Analytical Methods
Cations: Ca, Fe, K, Mg, Na, and Si	ICP-OES, EPA Method 6010D (U.S. EPA, 2014b) or EPA Method 200.7 (U.S. EPA, 1994b)
Anions: Br, Cl, F, NO ₃ and SO ₄ Dissolved CO ₂	Ion Chromatography, EPA Method 300.0 (U.S. EPA, 1993) Coulometric titration, ASTM D513-16 (ASTM, 2016)
Total Dissolved Solids Water Density Alkalinity pH (field) Specific conductance (field) Temperature (field)	Gravimetry, APHA 2540C (APHA) Oscillating body method APHA 2320B (APHA, 1997) EPA 150.1 (U.S. EPA, 1982) APHA 2510 (APHA, 1992) Thermocouple

2.5. Demonstration of mechanical integrity

Tri-State CCS, LLC will conduct tests and run logs as needed to demonstrate the internal and external mechanical integrity of all injection wells prior to initiating CO₂ injection, satisfying the hydrogeologic testing requirements under 40 CFR 146.87(e). Internal mechanical integrity refers to the absence of leaks in the tubing, packer, and casing above the packer. External mechanical integrity refers to the absence of fluid movement/leaks through channels adjacent to the injection wellbore that could result in fluid migration into an USDW. Table 5 provides a summary of the mechanical integrity tests (MITs) and pressure fall-off (PFO) tests to be performed prior to injection.

Table 5: Summary of planned MITs and other tests prior to injection.

Class VI Rule Citation	Rule Description	Test Description
40 CFR 146.89(a)(4)	MIT - Internal	Pressure Test
40 CFR 146.87(a)(4)	MIT - External	Casing Inspection Log
40 CFR 146.87(a)(4)	MIT - External	DTS/ Temperature Log
40 CFR 146.87(e)	Testing prior to operating	PFO, Injectivity Test

Cement placed in the annular space around the casing should be allowed to set to a minimum compressive strength of 500 psi and achieve a compressive strength of 1,200 psi within 72 hours, using approved engineering data for the type of cement used. Prior to drilling out the shoe on each casing string, a casing pressure test will be conducted. The test will be designed not to exceed the rated pressure of the casing. During the test, if any indication of a leak or failure are indicated, then the casing string will be recemented or repaired. Once remedial measures have taken place, the

pressure test will be conducted again. After cementing the casing strings, drilling will not commence until a time lapse of 8 hours under pressure has passed. All casing pressure tests will be recorded in the driller's log.

After the completion of TR1-1 and TR1-2, which includes the installation of tubing, packer, and annular fluid, a test of each well's internal mechanical integrity will be performed by conducting a standard annular pressure test (SAPT). The annular pressure test is a short-term test wherein the fluid in the annular space between the tubing and casing is pressurized, the well is shut-in (temporarily sealed up), and the pressure of the annular fluid is monitored for any changes.

The initial annulus pressure test will be conducted to validate well integrity. The test will include pressurizing the fluid-filled annulus to a specified level, which is at least equivalent to the maximum authorized injection pressure (For Lockport Dolomite and Medina Groups, the maximum injection pressure is estimated to be 3900 psi/ 4366 psi for TR1-1 and 3800 psi/ 4205 psi for TR1-2) and monitoring the pressure throughout a 60-minute test period. Per U.S. EPA Region 5 guidance, a passed test is one where the applied test pressure stabilizes within 3% of the required test pressure for the testing period, whereas a failed test is one where there is a 3% or greater loss of the applied pressure (Guidance for Deep Injection Wells, Guidance #5 (2008)).

2.5.1. Annulus Pressure Test Procedures for Injection and Monitoring Wells:

The general procedure for the annular pressure test is summarized as follows:

1. The tubing/casing annulus (annulus) will be filled with liquid. Temperature stabilization of the well and annulus liquid is necessary prior to conducting the test. This will be achieved by filling the annulus with liquid and either ceasing injection or maintaining stabilized injection (i.e., continuous injection at a constant rate and constant injection fluid temperature) before and through the test.
2. No unapproved substances will be added to the annulus liquid.
3. After stabilization, the annulus will be pressurized to a surface pressure of no less than 300 psig. A positive pressure differential between the pressure in the annular space and the injection tubing pressure of at least 100 psi will be maintained throughout the entire annulus (from the top of the packer to the surface). Specific gravity differences between liquids in the annulus and the tubing should be accounted for when determining the appropriate test pressure.
4. Following pressurization, the annular system will be isolated from the source of pressure. The annulus system will remain isolated for a period of no less than 60 minutes.
5. After the SAPT test period has been completed, the valve to the annulus will be opened and liquid returns from the annulus observed and measured.

During the active CO₂ injection phase, internal mechanical integrity will be continuously monitored by the well annular pressure maintenance and monitoring system, as discussed in more detail in the Testing and Monitoring Plan.

Tri-State CCS, LLC will also employ various methods to demonstrate external mechanical integrity upon the completion of all injection wells and prior to the start of injection operations.

Tri-State CCS, LLC will run DTS temperature surveys on all injection wells to demonstrate external mechanical integrity to provide confidence that there are no pathways for potential CO₂ or brine migration through the wellbore, casing, or cement prior to injection operations, satisfying the requirement of 40 CFR 146.87(a)(4).

2.6. Fracture Pressure of Injection and Confining Zone

As discussed above, the injection wells will be drilled and completed with limited testing after open hole logs are gathered. This will help limit borehole rugosity and provide the highest probability of achieving a mechanically sound cement installation. As such, Tri-State CCS, LLC does not intend to complete an open-hole fracture pressure test in the injection wells. Based on identified data gaps and results from the stratigraphic test well, and prior to installing the long-string casing in one of the in-zone observation wells (TR1-IOB-1 or TR1-IOB-2), Tri-State CCS, LLC will use the formation testing tool to conduct formation fracture tests to measure the fracture pressure of the injection formation and the confining unit(s). Then, a minifrac test will be used to locally pressure up a small interval in the test formation to the point where it just starts to fracture. This provides the fracture pressure without causing significant damage to the formation being tested.

In addition, to fully satisfy the requirements of 40 CFR 146.87(d), Tri-State CCS, LLC intends to run a dipole sonic log (Stoneley wave analysis) in the injection wells, which will allow calculation of the injection and confining zone reservoir fracture pressure.

2.7. Hydrogeologic Testing

After the injection wells are complete, including perforating the injection intervals and installing the injection tubing and packer, Tri-State CCS, LLC intends to run an injection test on the injection formations (Lockport Dolomite and Medina Groups) to determine the large-scale composite injectivity (transmissivity) of the injection intervals and possible presence of nearby hydrogeologic boundaries (Table 6). The injectate for this test will be produced formation water (brine) for respective injection formations from either the injection wells or fresh water which will serve as a proxy for CO₂ injection. Tri-State CCS, LLC intends to use the extensive wireline logging program to support and corroborate the hydrogeologic properties that are collected via direct fluid sampling from the injection zones. Additionally, Tri-State CCS, LLC will collect reservoir pressure data from the Lockport Dolomite and Medina Groups in TR1-1 and TR1-2 during the injectivity test.

The remainder of this page intentionally left blank.

Table 6: Composite injectivity evaluation testing program.

Test	Description	
Lockport Dolomite Group and Medina Group	Objectives	Primary objective: To determine the large-scale transmissivity of the injection zones and possible presence of nearby hydrogeologic boundaries using produced reservoir brine from the injection wells or using fresh water and provide direct information about the injectivity potential of the injection zones within the Lockport Dolomite and Medina Groups.
	Test/Depth Zone	Injection zone in 1) Lockport Dolomite and 2) Medina Groups. Approximate depth interval 1) 6050 - 6600 ft and 2) 6625 – 6950 ft measured depth ⁽¹⁾ Alternatively, this test may be conducted on one or more discrete depth intervals within these stratigraphic groups.
	Test Activity/Summary	The injection tubing and packer would be set just above the top of the two injection formations, i.e., within Lockport Dolomite and Medina Groups inside the casing string. After the packer is in place, a constant-rate injection utilizing produced reservoir brine from the injection wells or fresh water will be conducted. At the end of injection, the recovery pressure for the composite zone will be monitored for a period approximately 1.5 times or more of the injection period.

(1) These depths are approximate. Actual test intervals will be finalized once the wells are being drilled and will likely fall within the depth ranges identified in this application.

A pre-operation injection and PFO test will serve as the baseline test for establishing reservoir and well conditions for comparison to results of subsequent PFO tests conducted during the operational period (i.e., during CO₂ injection). Specifically, this comparison is intended to confirm that the pressure increase within the injection interval is less than predicted and ensure that the modeled parameters used in the Area of Review and Corrective Action Plan modeling analysis represent actual conditions.

The PFO tests will be conducted according to the U.S. EPA Region 5 guidance (*UIC Section Regional Guidance #6, Attachment 1 (1998)*). These guidelines define a PFO test as a pressure transient test that consists of shutting in an injection well after a period of prolonged injection and measuring the PFO. The fall-off period is a replay of the injection test preceding it; consequently, it is affected by the magnitude, length, and rate fluctuations of the injection period. Fall-off testing analysis provides reservoir and well parameters, including transmissivity, storage capability, skin factor, and well flowing and static pressures. Establishing a baseline value for these parameters will be useful for identifying changes in the well and/or reservoir properties after CO₂ injection begins; for example, an increasing skin factor may be indicative of formation damage which signals a need for well remediation while a decreasing skin factor may indicate near-wellbore cleanup.

2.7.1. Pressure Fall-Off Test Procedures:

Baseline PFO tests will be conducted as described in the Testing and Monitoring Plan and in this Pre-Operational Testing Program. The objective of the testing is to periodically monitor for changes in the near well bore environment that would impact injectivity or cause injection

pressures to increase. Baseline PFO testing will be performed in TR1-1 and TR1-2. A PFO test has a period of injection followed by a period of no-injection or shut-in. Normal injection will be used during the injection period preceding the shut-in portion of the falloff tests. However, if the rate causes relatively large changes in bottomhole pressure, the rate may be decreased. A minimum, one week of relatively continuous injection will precede the shut-in portion of the falloff test. The PFO data will be measured using a downhole gauge sampling at 5-second intervals. The gauges may be those used for day-to-day data acquisition, or a pressure gauge conveyed via wireline. Surface or downhole gauges will be used to inform test duration. The shut-in period of the PFO test will be adequate to assure that enough pressure transient data are collected to calculate the average pressure. Quantitative analysis of the measured data will be used to estimate formation characteristics, including transmissivity, permeability, and a skin factor. The measured parameters will be compared to those used in site computational modeling and AoR delineation.

The baseline PFO test will be conducted as part of the post-completion injectivity testing (e.g., constant-rate injection test conducted as either a single-well test and/or multi-well interference test).

2.8. Schedule

Tri-State CCS, LLC will provide the UIC Program Director with the opportunity to witness all logging and testing described in this program. Pursuant to 40 CFR 146.87(f), Tri-State CCS, LLC will submit a schedule of such activities to the UIC Program Director 30 days prior to conducting the first test and submit any changes to the schedule 30 days prior to the next scheduled test. Per EPA guidance, Tri-State CCS, LLC will provide notice and opportunity to witness testing to the UIC Program Director at least 48 hours in advance of a given test.

2.9. Reporting

Pursuant to 40 CFR 146.87(a), Tri-State CCS, LLC will provide the UIC Program Director with a descriptive report(s) prepared by a knowledgeable analyst(s) that includes an interpretation of the results of the casing and cement integrity, well logging, well testing, and core data for each injection well. These results will be documented in separate reports for TR1-1 and TR1-2 and submitted to the UIC Program Director within 60 days after completion of each injection well (U.S. EPA 2018). These report(s) will include:

- The date and time of each pressure test, the date of well bore completion, and the date of installation of all casings and cements, including chart results and interpretations of each cement bond log, cement pressure tests, and any supplemental well data;
- Interpretation of the well logs by a log analyst, including any assumptions, determination of porosity, permeability, lithology, thickness, depth, and formation fluid salinity of relevant geologic formations, and any changes in interpretation of site stratigraphy based on formation testing logs;
- Interpretation of sidewall core analysis results, including any changes in interpretation of site stratigraphy based on core analysis, analytical methods, quality assurance information, tabular and/or graphic data, and photographs;
- Reservoir fluid sampling results, including descriptions of the sampling equipment, sampling methodology, sample preservation methods, field and laboratory results, and any changes in interpretation of site stratigraphy based on fluid sample results;

- Reservoir pressure results and geomechanical results to determine injection and confining zone fracture pressure, including type and location of pressure gauge, type of flow meter and calibration records, raw pressure and flow data, and plot of flow rate versus pressure data, and any changes in geomechanical interpretations based on test results; and
- Hydrogeologic test results, including pressure and flow data, testing parameters, discussion of results, and any changes in interpretation of injectivity and storage potential based on injection/fall-off test results.

3. References

American Public Health Association (APHA), SM 2540 C. "Standard Methods for the Examination of Water and Wastewater", APHA-AWWA-WPCF, 20th Edition (SDWA) and 21st Edition (CWA).

U.S. EPA, (1982). "Method 150.1: "pH, Electrometric Method; Methods for the Chemical Analysis of Water and Wastes (MCAWW) (EPA/600/4-79/020)", Revision 2.

American Public Health Association (APHA), SM2510 (1992). "Standard Methods for the Examination of Water and Wastewater", APHA-AWWA-WPCF, 18th Edition, 1992.

U.S. EPA, (1993). "Method 300.0: "Methods for the Determination of Inorganic Substances in Environmental Samples." Revision 2.1. Washington, DC.

U.S. EPA, (1993). "Method 300.0: "Methods for the Determination of Inorganic Substances in Environmental Samples." Revision 2.1. Washington, DC.

U.S. EPA, (1994a). "Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma – Mass Spectrometry." Revision 5.4. Environmental Monitoring Systems Laboratory Office of Research and Development U.S. Environmental Protection Agency, Cincinnati, Ohio.

U.S. EPA, (1994b). "Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma – Atomic Emission Spectrometry." Revision 4.4. Environmental Monitoring Systems Laboratory Office of Research and Development U.S. Environmental Protection Agency, Cincinnati, Ohio.

U.S. EPA, (1996). "Method 6010B: Inductively Coupled Plasma-Optical Emission Spectrometry." Revision 2. Washington, DC.

US. EPA, (1998). EPA Region 5 Guidance for Deep Injection Wells, Guidance #6: Planning, Executing, and Reporting Pressure Transient Tests.

American Public Health Association (APHA), 2320B (2005). "Titration Method", APHA-AWWA-WPCF, 21st Edition.

U.S. EPA, (2008). EPA Region 5 Guidance for Deep Injection Wells, Guidance #5: Determination of the Mechanical Integrity of Injection Wells.

ASTM Standard D513-11, (2016). “Standard Test Methods for Total and Dissolved Carbon Dioxide in Water,” ASTM International, West Conshohocken, PA. DOI: 10.1520/D0513-11E01, www.astm.org.

U.S. EPA, (2014a). “Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry.” Revision 2. Washington, DC.

U.S. EPA, (2014b). “Method 6010D (SW-846): Inductively Coupled Plasma-Optical Emission Spectrometry.” Revision 4. Washington, DC.

U.S. EPA, (2018). Underground Injection Control (UIC) Program Class VI Implementation Manual for UIC Program Directors.