

**Underground Injection Control
Carbon Sequestration
Class VI Permit Application**

**CONSTRUCTION DETAILS
40 CFR 146.86
Section 5.0**

**NexGen Carbon Oklahoma, LLC
Vanguard CCS Hub**

June 2025

5.0 CONSTRUCTION DETAILS

VANGUARD CCS HUB

INSTRUCTIONS

This template provides a suggested outline and recommendations for the construction details summary for a Class VI well. Permit applicants are not required to use this template. This document does not substitute for promulgated provisions or regulations, nor is it a regulation itself, and it does not impose legally-binding requirements on the U.S. Environmental Protection Agency (EPA), states, or the regulated community.

Note that references to EPA's Class VI Rule in the code of federal regulations (CFR) are provided in this template. States with Class VI primacy have requirements that are at least as stringent as EPA's. If your Class VI well is in a primacy state, consult your permitting authority about any additional requirements for what must be included in the plan.

In this template, instructions or suggestions appear in **blue text**. These are provided to assist with site- and project-specific plan development. These are recommendations and are not required elements of the federal Class VI Rule.

Please delete the **blue text** and replace the yellow highlighted text before submitting your document. Similarly, please adjust the example text and tables throughout as necessary (e.g., by adding or removing rows or columns). Appropriate figures, references, etc. should also be included to support the text of the plan.

For more information, see EPA's Class VI guidance documents at <https://www.epa.gov/uic/class-vi-guidance-documents>. It is the responsibility of the owner or operator to maintain records of previous revisions to this plan.

Facility Information

Facility name: Vanguard CCS Hub
Vanguard I-1
Vanguard I-2
Vanguard I-3
Vanguard I-4
Vanguard I-5
Vanguard I-6
Vanguard I-8
Vanguard I-9
Vanguard I-10
Vanguard I-12

Plan revision number: 0

Plan revision date: 6/24/2025

Facility contact: Marc Thomas, President & COO
600 Rockmead Drive, Suite 112
Kingwood, TX 77339
(346) 576-8215
marcthomas@nexgencarbonolutions.com

Well locations: Osage County, Oklahoma

Vanguard I-1: Lat 36.633288°N, Lon -96.571029°W (NAD 83)
Vanguard I-2: Lat 36.660083°N, Lon -96.534652°W (NAD 83)
Vanguard I-3: Lat 36.664329°N, Lon -96.586951°W (NAD 83)
Vanguard I-4: Lat 36.710244°N, Lon -96.542370°W (NAD 83)
Vanguard I-5: Lat 36.744047°N, Lon -96.533843°W (NAD 83)
Vanguard I-6: Lat 36.724157°N, Lon -96.489526°W (NAD 83)
Vanguard I-8: Lat 36.823356°N, Lon -96.620496°W (NAD 83)
Vanguard I-9: Lat 36.849167°N, Lon -96.592912°W (NAD 83)
Vanguard I-10: Lat 36.893849°N, Lon -96.578026°W (NAD 83)
Vanguard I-12: Lat 36.785641°N, Lon -96.594085°W (NAD 83)

Table of Contents

5.0 CONSTRUCTION DETAILS.....	8
5.1 Proposed Stimulation Program [40 CFR 146.82(s)(9)]	9
5.2 Introduction	9
5.3 General Outline of Injection Well Design [40 CFR 146.82(a)(12)].....	10
5.3.1 Mechanical Integrity Testing.....	10
5.3.2 Injection Well Construction Details.....	10
5.3.3 Injection Well Construction Procedure.....	11
5.3.4 Injection Well Construction Diagrams	19
5.4 Above-Zone Monitoring Wells.....	20
5.4.1 Above-Zone Monitoring Well Construction Diagrams	27
5.5 In-Zone Monitoring Wells.....	28
5.5.1 In-zone Monitoring Well Construction Diagram	32
5.6 Near Surface Monitoring Wells.....	34
Appendix 1—Wellbore Diagrams for Injection Wells.....	36
Appendix 2—Wellbore Diagrams for Above-Zone Monitoring Wells	47
Appendix 3—Wellbore Diagrams for In-Zone Monitoring Wells	58

List of Figures

Figure 5.1 is the well bore diagram (WBD) for Vanguard I-1. The WBD's for all injection wells can be found in Appendix 1.....	19
Figure 5.2 Vanguard AZM-1 (above-zone monitoring well) WBD	28
Figure 5.3 Vanguard IZM-1 (in-zone monitoring well) WBD.....	33
Figure 5.4 Vanguard GWM-1 (groundwater and seismic monitoring well) WBD	35
Figure 5.5—Planned well construction diagram for the Vanguard I-1 Injector.....	37
Figure 5.6—Planned well construction diagram for the Vanguard I-2 Injector.....	38
Figure 5.7—Planned well construction diagram for the Vanguard I-3 Injector.....	39
Figure 5.8—Planned well construction diagram for the Vanguard I-4 Injector.....	40
Figure 5.9—Planned well construction diagram for the Vanguard I-5 Injector.....	41
Figure 5.10—Planned well construction diagram for the Vanguard I-6 Injector.....	42
Figure 5.11—Planned well construction diagram for the Vanguard I-8 Injector.....	43
Figure 5.12—Planned well construction diagram for the Vanguard I-9 Injector.....	44
Figure 5.13—Planned well construction diagram for the Vanguard I-10 Injector.....	45
Figure 5.14—Planned well construction diagram for the Vanguard I-12 Injector.....	46

Figure 5.15—Planned well construction diagram for the Vanguard AZM-1 Monitoring Well (Above-Zone).....	48
Figure 5.16—Planned well construction diagram for the Vanguard AZM-2 Monitoring Well (Above-Zone).....	49
Figure 5.17—Planned well construction diagram for the Vanguard AZM-3 Monitoring Well (Above-Zone).....	50
Figure 5.18—Planned well construction diagram for the Vanguard AZM-4 Monitoring Well (Above-Zone).....	51
Figure 5.19—Planned well construction diagram for the Vanguard AZM-5 Monitoring Well (Above-Zone).....	52
Figure 5.20—Planned well construction diagram for the Vanguard AZM-6 Monitoring Well (Above-Zone).....	53
Figure 5.21—Planned well construction diagram for the Vanguard AZM-8 Monitoring Well (Above-Zone).....	54
Figure 5.22—Planned well construction diagram for the Vanguard AZM-9 Monitoring Well (Above-Zone).....	55
Figure 5.23—Planned well construction diagram for the Vanguard AZM-10 Monitoring Well (Above-Zone).....	56
Figure 5.24—Planned well construction diagram for the Vanguard AZM-12 Monitoring Well (Above-Zone).....	57
Figure 5.25—Planned well construction diagram for the Vanguard IZM-1 Monitoring Well (In-Zone).....	59
Figure 5.26—Planned well construction diagram for the Vanguard IZM-2 Monitoring Well (In-Zone)	60
Figure 5.27—Planned well construction diagram for the Vanguard IZM-3 Monitoring Well (In-Zone)	61
Figure 5.28—Planned well construction diagram for the Vanguard IZM-4 Monitoring Well (In-Zone)	62
Figure 5.29—Planned well construction diagram for the Vanguard IZM-5 Monitoring Well (In-Zone)	63
Figure 5.30—Planned well construction diagram for the Vanguard IZM-6 Monitoring Well (In-Zone)	64
Figure 5.31—Planned well construction diagram for the Vanguard IZM-7 Monitoring Well (In-Zone)	65

List of Tables

Table 5.1—Injection well design details for Vanguard I-1, Vanguard I-2, Vanguard I-3, Vanguard I-4, Vanguard I-5, Vanguard I-6, Vanguard I-8, Vanguard I-9, Vanguard I-10, Vanguard I-12....	9
Table 5.2—Open hole diameters and intervals Vanguard Injection wells.....	13
Table 5.3— Casing Specifications for Vanguard Injection wells	14
Table 5.4 Tubing Specifications for Vanguard Injection wells.....	15
Table 5.5 Packer Specifications for Vanguard Injection wells	15
Table 5.6 Cement Specifications for Vanguard Injection wells	17

Table 5.7 Open hole diameters and intervals for Vanguard AZM-1 to AZM-12.....	22
Table 5.8 Casing Specifications for Vanguard AZM-1 to AZM-12.....	22
Table 5.9 Cement Specifications for Vanguard AZM-1 to AZM-12	24
Table 5.10 Open hole diameters and intervals for Vanguard IZM-1 to IZM-7.....	30
Table 5.11 Casing specifications for Vanguard IZM-1 to IZM-7	30
Table 5.12 Cement specifications for Vanguard IZM-1 to IZM-7	31

Acronyms and Abbreviations

25CR	25 chromium
A	
AoR	area of review
API	American Petroleum Institute
B	
BBL	barrel
C	
C	Celsius
CO ₂	carbon dioxide
CRA	corrosion resistant alloys
D	
DAC	Direct attach copper
DAT	Digital audio tape
DF	design factor
DTS	Distributed Temperature Sensing
E	
ECD	equivalent circulating density
EPA	Environmental Protection Agency
F	
F	Fahrenheit
ft	foot or feet
H	
H ₂ S	hydrogen sulfide
I	
in	inch or inches
K	
KIPS	equivalent of 1,000 pounds of force
ksi	thousand pounds per square inch
L	
lbm/ft	pounds per foot
M	

Plan revision number: 0
Plan revision date: 6/24/2025

Mta million tons per annum (year)

O

OBM oil based mud

OEM Original equipment manufacturer

P

ppf Pounds per foot

PPG pounds per gallon

psi pounds per square inch

psi/ft pounds per square inch per foot

S

SCADA Supervisory Control and Data
Acquisition

SWD Salt Water Disposal

T

TEC Tubing encapsulated cable

TOC top of cement

U

UCZ Upper confining zone

USDW underground source of drinking water

V

VAM A threaded and coupled connection for
tubing and casing string types,
providing gas-tight sealing under severe
conditions

W

w/m watts per meter

WBD Wellbore diagram

WBM water based mud

5.0 CONSTRUCTION DETAILS

The design and operations of the injection and monitoring wells consider the injection volume, rate, chemical composition, and physical properties of the injectate fluid, metallurgical evaluations, as well as the potentially corrosive nature of the injectate fluid and its interaction with wellbore components. The design of the injection wells is optimized to permanently sequester CO₂ and prevent the movement of CO₂ and subsurface fluids into USDWs.

The expected composition of the entire injectate stream is shown in *Section 7* and will consist of greater than 95% CO₂ and less than 1,500ppm water content. Future samples and laboratory testing will validate the injectate stream composition upon confirmation of the final source.

The upper Arbuckle Group carbonate is the primary injection target for the injectors with the Lower Mississippian Limestone unit and Woodford Shale providing the primary upper confining zone (UCZ), with the lower 40% of the Arbuckle group providing the lower confining seal, due to lower permeability.

The ten (10) injection wells, ten (10) above-zone monitoring wells, and seven (7) in-zone monitoring wells planned at the Vanguard CCS Hub will be constructed in accordance with 40 CFR 146.82(a)(9), (11), and (12) and 40 CFR 146.86. The designs incorporate corrosion and CO₂-resistant materials (CRA) and ensures compatibility with downhole tools, fiber optic cable, gauges, and workover equipment allowing for effective operation and maintenance. The wellbore cement design, and products used, to cement the well are designed to create good, reliable bonding between the casing and formations while withstanding the potentially corrosive nature of the injectate. The casings are designed with a sufficient cement sheath to protect the wellbore from developing any channeling out of the injection interval and to maintain the CO₂ below the UCZ (the Woodford Formation and the Lower Miss. Limestone).

This section also includes the design and construction plans for the monitoring wells to support the injection and monitoring processes outlined in the application. The plan includes drilling ten (10) above-zone monitoring wells, designated: Vanguard AZM-1, Vanguard AZM-2, Vanguard AZM-3, Vanguard AZM-4, Vanguard AZM-5, Vanguard AZM-6, Vanguard AZM-8, Vanguard AZM-9, Vanguard AZM-10, Vanguard AZM-12 and seven (7) in-zone monitoring wells, labeled Vanguard IZM-1 through Vanguard IZM-7. These monitoring wells are being permitted for construction through all applicable federal, state and local regulatory entities.

The specific construction details for the Vanguard I-1 injection well, the Vanguard AZM-1 above-zone monitoring well, and the Vanguard IZM-1 in-zone monitoring well, are described in this section in detail. All other injection, above-zone and in-zone well details will follow the same procedures. The AZM wells will be equipped with DTS fiber optic cable to provide continuous downhole temperature and allow for indirect CO₂ monitoring when required. The IZM wells will be equipped with both DTS and behind casing quartz pressure gauges to provide continuous downhole temperature and pressure readings throughout the wellbore and allow for indirect CO₂ monitoring when required. The tables in *Section 5.1*, *5.2*, and *5.3* specify well design parameters for each individual injector, in-zone monitoring and above-zone monitoring well, respectively.

Bottomhole assemblies and drill string analysis will be performed to prevent excessive wellbore deviation. Deviation surveys will be taken while drilling, and the well will be corrected for

direction and/or inclination if required. All downhole equipment will be operated within OEM specifications to prevent damage to the bottomhole assembly (BHA) and drill string. If drilling equipment is lost downhole, fishing services are available for recovery. A loss circulation response plan will be implemented in collaboration with the drilling fluid services provider, and materials will be made available on-site. Cement modeling will be conducted prior to the final design proposal, and the cement provider will adhere to all regulatory requirements, API specifications, and recommended practices.

5.1 Proposed Stimulation Program [40 CFR 146.82(s)(9)]

Vanguard injection wells may require a stimulation program over selected intervals after well perforation, depending on downhole conditions. Currently they are not anticipated to require stimulation, however if stimulation is required, the zones will be chosen based on well log, core, and formation testing evaluations. Core testing will be performed for fluid compatibility and reactivity. Additional data will be used to design stimulation procedures submitted to EPA Region 6 for approval. Arbuckle SWD wells have historically responded well to acid stimulations. Any downhole-injected chemicals will comply with state and federal regulations. See *Section 12—Stimulation Program* for details on the planned stimulation program, should it be needed.

5.2 Introduction

NexGen permit's *Section 5* outlines the engineering design specifications for the injectors, while *Section 7* details the operational strategies for the planning and operations of the proposed injection wells **Table 5.1**.

Table 5.1—Injection well design details for Vanguard I-1, Vanguard I-2, Vanguard I-3, Vanguard I-4, Vanguard I-5, Vanguard I-6, Vanguard I-8, Vanguard I-9, Vanguard I-10, Vanguard I-12

Well Name	Injection Zone Formation Name(s)	Injection Well Total Depth (ft)	Injection Zone Depths (ft)
Vanguard I-1	Upper Arbuckle	3,724	3,104-3,664
Vanguard I-2	Upper Arbuckle	3,611	3,055-3,551
Vanguard I-3	Upper Arbuckle	3,848	3,240-3,788
Vanguard I-4	Upper Arbuckle	3,589	3,092-3,529
Vanguard I-5	Upper Arbuckle	3,536	3,072-3,476
Vanguard I-6	Upper Arbuckle	3,404	2,919-3,344
Vanguard I-8	Upper Arbuckle	3,832	3,307-3,772
Vanguard I-9	Upper Arbuckle	3,901	3,308-3,841
Vanguard I-10	Upper Arbuckle	3,808	3,168-3,748
Vanguard I-12	Upper Arbuckle	3,832	3,305-3,772

*Depths are measured depth (ft)

The ten injection wells, collectively, are designed to inject approximately 3.5 million metric tons per year at an average wellhead pressure of 1,140 psi and a maximum annular pressure of 1,240 psi. The estimated Arbuckle Formation reservoir temperature is 115°F, and the fluid in the injection zone is assumed to be brine with approximately 125,000 mg/L TDS.

5.3 General Outline of Injection Well Design [40 CFR 146.82(a)(12)]

5.3.1 *Mechanical Integrity Testing*

Annulus Pressure Test

All annuli, except the tubing annulus, will be cemented to the surface. NexGen will ensure mechanical integrity by performing an annular pressure test after installing the tubing. The annular pressure test will demonstrate the mechanical integrity of the casing above the packer, tubing, and packer sealing element. The procedure outlines how this test will be conducted:

1. Move in and rig up the pump unit.
2. Perform fingerprint pressure up at the planned pump rate against a closed valve to ensure no leaks are present upstream of the tubing annulus.
3. Line up to pump down the tubing annulus.
4. Begin pumping down the tubing annulus at the same rate the fingerprint pressure up was performed.
5. Test pressure will be equal to or less than 80% of exposed equipment but no greater than the limited surface injection pressure or 500 psi, whichever is less.
6. All ports into the casing annulus must be closed except the one monitored by the test pressure gauge.
7. The test pressure will be monitored and recorded for a minimum duration of 30 minutes.
8. Any discernable loss (> 10%) of pressure during the testing period will be considered a failed test.

5.3.2 *Injection Well Construction Details*

The well design, for the ten (10) injection wells, includes a 100-ft conductor pipe (16 in), followed by 600-1,100 ft of API 9 5/8 in, 40 ppf, J-55 surface casing extending 150 ft below the base of the Vamoosa Formation (at each injection well location), identified as the lowermost possible base of the USDW.

The production casing, also referred to as the long string casing, will be a combination of API 7 in, 26ppf, L-80 and CRA 7 in, 26ppf 25CR80ksi casing with premium connections, extending approximately 60 ft into the upper Arbuckle reservoir at an average depth of 3,100 ft. The long string will be cemented to surface in two (2) stages and will secure the upper Arbuckle Group reservoir, the overlying confining layers, and the saline monitoring interval. At each stage of construction, casing will be cemented to the surface as per U.S. Environmental Protection (EPA) Class VI standards, to ensure zonal isolation.

Expected loads on the surface casing, production casing, and production tubing will be within equipment specifications. Due to the shallow depths of the wells modeled loads (downhole stresses) with design limits and equipment specification limits were not modeled at this time, but will be confirmed prior to running.

Below the long string casing shoe, the upper Arbuckle Group interval will be left open hole to allow for injection. The Arbuckle Group has been used for saltwater disposal (SWD) in Osage

County, OK since the 1950s, with an estimated 300 million barrels of produced water effectively injected and confined over the past seven (7) decades. Existing disposal wells in the area are typically open-hole completions. This historical success in high-volume water disposal, and lack of induced seismicity, supports the proposed method for containing CO₂ in the upper Arbuckle Group reservoir. The proposed designs for these wells are depicted in **(Figure 5.1)** and **Appendix 1—Wellbore Diagrams for Injection Wells.**

5.3.2.1 Casing and Cementing (40 CFR 146.86(b)(iv))

The casing and cement used in the construction of each of the Vanguard Injection, Above-Zone Monitoring, and In-zone monitoring wells will have sufficient structural strength and are designed for the life of the sequestration project. All well materials are compatible with all injectate and reservoir fluids they may be and meet or exceed standards developed for such materials by the American Petroleum Institute, ASTM International. The casing and cementing programs are designed to prevent the movement of fluids into or between USDWs.

Upon reaching final depths, a casing centralizer model will be completed, such that a sufficient number of centralizers are installed from the long string casing shoe to surface, to ensure the best possible cement barrier and ensure isolation and integrity. Cementing programs include lead and tail slurries in addition to a stage tool to ensure zonal coverage and that all strings are cemented to the surface, while to maximize cementing efficiency.

5.3.2.2 Tubing and Packer

Injectate fluid will be injected through tubing with a packer. The injection tubing will be 3-½-in 25CRW, with premium connections, installed from surface to 60 ft above the long string casing shoe isolated with a 3-½-in x 7-in CRA material retrievable packer. All tubular and packer materials will meet or exceed standards developed for such materials by the American Petroleum Institute, ASTM International, and will be compatible with all fluids with which the materials may be expected to come into contact. The expected composition of the entire injectate stream is shown in *Section 7* and will consist of greater than 95% CO₂ and less than 150 ppm water content. Future samples and laboratory testing will validate the injectate stream composition, upon confirmation of the final source.

5.3.2.3 Injection Well Monitoring Devices

The tubing and casing annulus pressures will be continuously monitored at surface and downhole to ensure that well integrity is maintained. A SCADA system will measure and record downhole temperatures and pressures in the injection interval and assist in monitoring the CO₂ plume's size. The monitoring system consists of running a fiber optic cable (purple line on **Figure 5.1**) as the production casing is run in the hole. The cable will then be cemented into place. See permit *Section 8* for additional information regarding monitoring plan.

5.3.3 Injection Well Construction Procedure

The following is an outline procedure describing the steps to construct the injector Vanguard I-1:

- 1) Move in, rig up drilling rig.
- 2) Drill 20 in conductor hole to 100 ft.
- 3) RIH 100 ft of 16 in, 64lb./ft, H40 casing.
- 4) Cement conductor casing from 100 ft to surface, using Class A cement (150sx + excess).
- 5) Drill 12-1/4 in hole with freshwater spud mud to approximately 754 ft.
- 6) Run open hole logs from 754 ft to 100 ft.
- 7) RIH 754 ft of 9 5/8 in, J-55, 40lb./ft, casing.
- 8) Cement surface casing from 754 ft to surface using 14.5ppg, Class A cement (245sx + excess).
- 9) Install blowout preventor and pressure test.
- 10) Drill 8-1/2 in. hole from 754 ft to approximately 3,104 ft.
- 11) Run open hole logs from 3,104 ft to 754 ft.
- 12) Run cased hole logs from 754 ft to surface.
- 13) Run 283 ft of 7 in. 26 lb./ft, 25Cr80ksi, premium connection, casing followed by 2,821 ft, 7 in 26 lb/ft) L80, premium connection, casing complete with DTS fiber optic cable to casing point. Install DV tool at approx. 1650ft. Ensure final centralizer program is followed.
- 14) Cement the 7-in. casing in two (2) stages as follows:
 - a. Stage 1:
 - i. Pump 1,171ft of class G, 11.8ppg, lead slurry
 - ii. Followed by 283ft of 14.5ppg EverCrete or equivalent, tail slurry
 - b. Stage 2:
 - i. Pump 1,650ft of Class G, 11.8ppg, to surface
- 15) WOC. RIH w. 6 1/8 in bit and drill out DV tool at 1,650 ft and float shoe at 3,104 ft.
- 16) Drill 6 1/8 in open hole to TD of approximately 3,724 ft.
- 17) Run open hole logs from 3,724 to 3,104 ft.
- 18) Run cased hole logs with baseline VDL/CBL, USIT, and temperature log from 3,104 ft to 754 ft
- 19) Nipple down BOP's and install wellhead.
- 20) Rig down, move out drilling rig.
- 21) Move in and rig up a completion rig.
- 22) RIH with work string and clean to TD to ensure open hole is free and clear.
- 23) Pick up and pressure test into the hole 3-1/2-in., 9.2ppf, 25CRW, VAMTop (or equivalent) injection tubing string with a 7"x3 1/2" CRA retrievable packer complete with tubing and annular bottom hole pressure gauges on TEC, and 2jts of tail pipe.
- 24) Set packer at approximately 2,979 ft.
- 25) Land tubing bottom at approximately 3,044 ft and install injection tree. Complete annular MIT
- 26) Rig down the completion rig.

Plan revision number: 0

Plan revision date: 6/24/2025

Table 5.2—Open hole diameters and intervals Vanguard Injection wells

Well ¹	Surface Hole									
	I-1	I-2	I-3	I-4	I-5	I-6	I-8	I-9	I-10	I-12
Depth (ft TVD)	0-754	0-686	0-916	0-776	0-765	0-568	0-1,117	0-1,054	0-984	0-1,058
Open Hole Diameter (inches)	12 1/4									
Comment	Landed 150 ft below base Vamoosa Formation									

Well	Long String									
	I-1	I-2	I-3	I-4	I-5	I-6	I-8	I-9	I-10	I-12
Depth (ft TVD)	3,104	3,055	3,240	3,092	3,072	2,919	3,307	3,308	3,168	3,305
Open Hole Diameter (inches)	8 1/2									
Comment	Landed approx. 60ft into top Arbuckle									

Well	Open Hole Injection Interval									
	I-1	I-2	I-3	I-4	I-5	I-6	I-8	I-9	I-10	I-12
Depth Interval (ft TVD)	3,104 - 3,724	3,055 - 3,611	3,240 - 3,848	3,092 - 3,589	3,072 - 3,536	2,919 - 3,404	3,307 - 3,832	3,308 - 3,901	3,168 - 3,808	3,305- 3,832
Open Hole Diameter (inches)	6 1/8									
Comment										

¹ Note: Well name nomenclature has been shortened for brevity (e.g., from Vanguard I-1 to I-1).

Plan revision number: 0

Plan revision date: 6/24/2025

Table 5.3— Casing Specifications for Vanguard Injection wells

Well	Surface Casing									
	I-1	I-2	I-3	I-4	I-5	I-6	I-8	I-9	I-10	I-12
Depth (ft TVD)	0-754	0-686	0-916	0-776	0-765	0-568	0-1,117	0-1,054	0-984	0-1,058
Outside Diameter (inches)							9 5/8			
Inside Diameter (inches)							8.835			
Weight (ppf)							40			
Grade (API)							J-55			
Design Coupling							LT&C			
Burst Strength (psi)							3,950			
Collapse Strength (psi)							2,570			

Well	Long String									
	I-1	I-2	I-3	I-4	I-5	I-6	I-8	I-9	I-10	I-12
Depth (ft TVD)	0-2,821	0-2,728	0-2,950	0-2,817	0-2,806	0-2,644	0-3,038	0-3,054	0-2,914	0-3,071
Outside Diameter (inches)							7			
Inside Diameter (inches)							6.276			
Weight (ppf)							26			
Grade (API)							L-80			
Design Coupling							VAM or equivalent			
Thermal Conductivity (BTU/(h*ft*F))							16.178			
Burst Strength (psi)							7,240			
Collapse Strength (psi)							5,410			

Long String - CRA

Plan revision number: 0

Plan revision date: 6/24/2025

Well	I-1	I-2	I-3	I-4	I-5	I-6	I-8	I-9	I-10	I-12
Depth (ft TVD)	2,821-3,104	2,728-3,055	2,950-3,240	2,817-3,092	2,806-3,072	2,644-2,919	3,038-3,307	3,054-3,308	2,914-3,168	3,071-3,305
Outside Diameter (inches)						7				
Inside Diameter (inches)						6.276				
Weight (ppf)						26				
Grade (API)						25Cr-80ksi				
Design Coupling						VAM or equivalent				
Thermal Conductivity (BTU/(h*ft*F))						8.089				
Burst Strength (psi)						7,450				
Collapse Strength (psi)						5,410				

Table 5.4 Tubing Specifications for Vanguard Injection wells

Well	Tubing									
	I-1	I-2	I-3	I-4	I-5	I-6	I-8	I-9	I-10	I-12
Depth (ft TVD)	3,044	2,995	3,180	3,032	3,012	2,859	3,247	3,248	3,108	3,245
Outside Diameter (inches)						3 1/2				
Inside Diameter (inches)						2.992				
Weight (ppf)						9.2				
Grade (API)						25CRW				
Design Coupling						VAM or equivalent				
Burst Strength (psi)						10,450				
Collapse Strength (psi)						10,540				

Table 5.5 Packer Specifications for Vanguard Injection wells

Well	I-1	I-2	I-3	I-4	I-5	I-6	I-8	I-9	I-10	I-12
Packer Type and Material	Premium packer with V0 rating (CRA)									
Packer Setting Depth (ft TVD)	2,979	2,930	3,115	2,967	2,947	2,794	3,182	3,183	3,043	3,180

Plan revision number: 0

Plan revision date: 6/24/2025

Length	under review
Nominal Casing Weight (ppf)	26
Packer Main Body Outer Diameter (inches)	7
Packer Inner Diameter (inches)	under review

Table 5.6 Cement Specifications for Vanguard Injection wells

	Surface Casing									
	I-1	I-2	I-3	I-4	I-5	I-6	I-8	I-9	I-10	I-12
Depth (ft TVD)	0-754	0-686	0-916	0-776	0-765	0-568	0-1,117	0-1,054	0-984	0-1,058
OH Diameter (in)						12 1/4				
Csg Diameter (in)						9 5/8				
Capacity (cf/ft)					0.3132					
% excess for washout					15%					
Cement Class					A					
Slurry Weight (lb/gal)					14.5					
Cement Yield (cf/sk)					1.39					
Volume (cf)	334	320	403	355	348	278	466	452	417	452

	Long String - Stage 2									
	I-1	I-2	I-3	I-4	I-5	I-6	I-8	I-9	I-10	I-12
Depth (ft TVD)					0 - 1,650					
OH Diameter (in)					8 1/2					
Csg Diameter (in)					7					
Capacity (cf/ft)					0.1268					
% excess for washout					15%					
Cement Class					G					
Slurry Weight (lb/gal)					12.6					
Cement Yield (cf/sk)					2.26					
Volume (cf)					271					

Plan revision number: 0

Plan revision date: 6/24/2025

	Long String - Stage 1 - Tail									
	I-1	I-2	I-3	I-4	I-5	I-6	I-8	I-9	I-10	I-12
Depth (ft TVD)	2,821- 3,104	2,728- 3,055	2,950- 3,240	2,817- 3,092	2,806- 3,072	2,644- 2,919	3,038- 3,307	3,054- 3,308	2,914- 3,168	3,071- 3,305
OH Diameter (in)	8 1/2									
Csg Diameter (in)	7									
Capacity (cf/ft)	0.1268									
% excess for washout	15%									
Cement Class	Evercrete or equivalent									
Slurry Weight (lb/gal)	14.5									
Cement Yield (cf/sk)	1.22									
Volume (cf)	67	73	37	67	67	67	67	67	67	61

	Long String - Stage 1 - Lead									
	I-1	I-2	I-3	I-4	I-5	I-6	I-8	I-9	I-10	I-12
Depth (ft TVD)	1,650- 2,821	1,650- 2,728	1,650- 2,950	1,650- 2,817	1,650- 2,806	1,650- 2,644	1,650- 3,038	1,650- 3,054	1,650- 2,914	1,650- 3,071
OH Diameter (in)	8 1/2									
Csg Diameter (in)	7									
Capacity (cf/ft)	0.1268									
% excess for washout	15%									
Cement Class	G									
Slurry Weight (lb/gal)	12.6									
Cement Yield (cf/sk)	2.26									
Volume (cf)	203	192	215	203	192	181	237	237	215	237

5.3.4 *Injection Well Construction Diagrams*

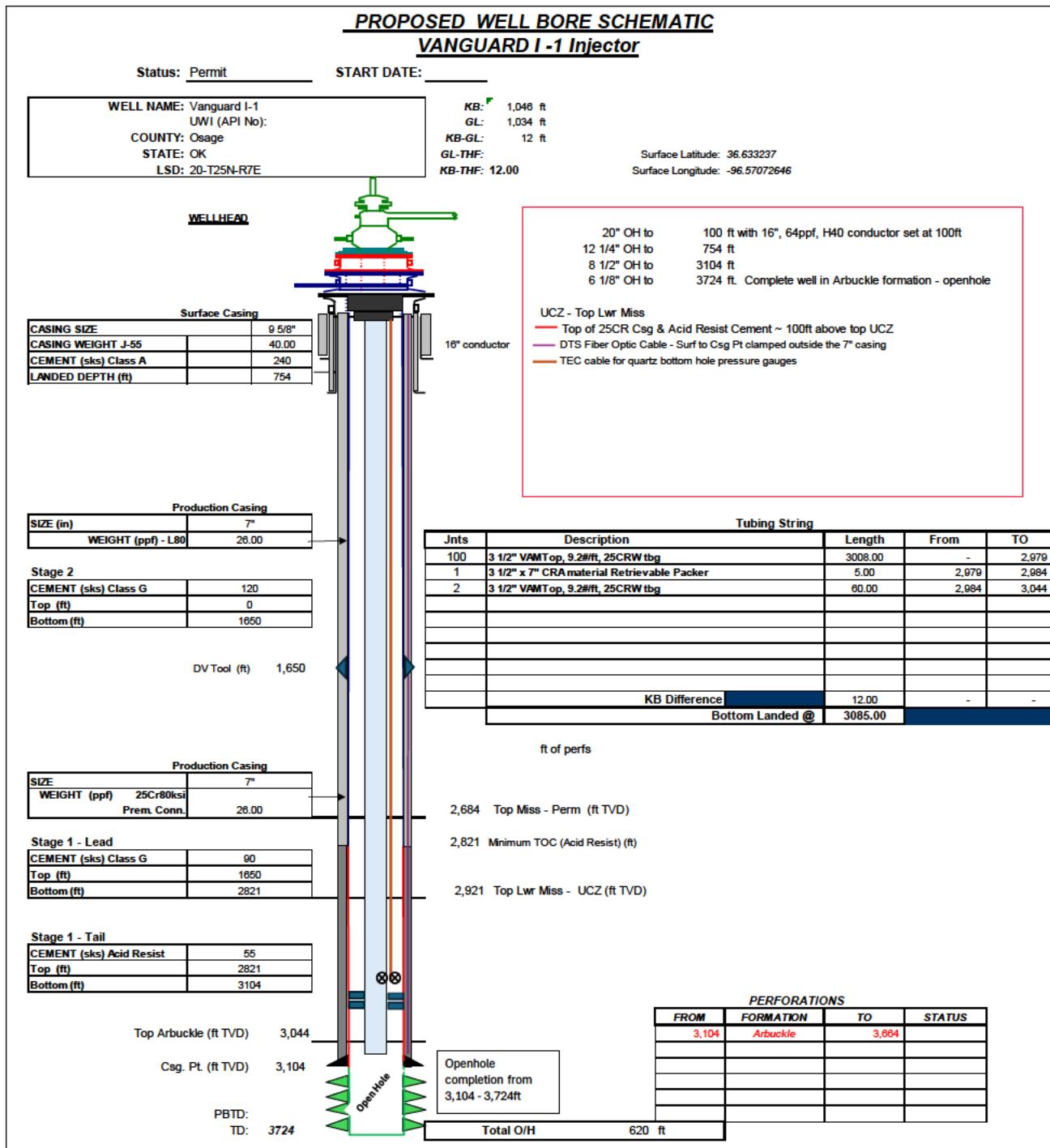


Figure 5.1 is the well bore diagram (WBD) for Vanguard I-1. The WBD's for all injection wells can be found in Appendix 1.

5.1.3 General Outline of Injection Well Design and Completion Schematic

5.4 Above-Zone Monitoring Wells

NexGen plans to drill and complete ten (10) above-zone monitoring wells, designated as Vanguard AZM-1, Vanguard AZM-2, Vanguard AZM-3, Vanguard AZM-4, Vanguard AZM-5, Vanguard AZM-6, Vanguard AZM-8, Vanguard AZM-9, Vanguard AZM-10 and Vanguard AZM-12, to monitor the lowermost permeable interval above the upper confining layer (Top Lower Mississippian). These monitoring wells will be located approximately 250 ft laterally east of the injection wells and will track any potential CO₂ migration from the confining zone into the first permeable zone above the UCZ. These wells will consist of corrosion-resistant materials for construction. The final well locations may be adjusted based on the results of hydrogeologic testing. NexGen intends to place these wells updip from the injection wells, targeting the areas most likely to experience a potential leak. The proposed designs for these wells are depicted in **Figure 5.2 and Appendix 2—Wellbore Diagrams for Above-Zone Monitoring Wells**

The above-zone monitoring wells are designed to be completed in the Top Mississippian Lime which is the first permeable zone above the confining layer, at an average depth of ~2,700 ft TVD.

The well design includes a 100-ft conductor pipe (16in), followed by 600-1,100 ft of API 7", 23ppf, J-55 surface casing extending 150 ft below the base of the Vamoosa Formation (at each location), identified as the lowermost possible base of the USDW.

The long string casing will consist of a combination of API 4 1/2in, 11.6 ppf, L-80 and CRA 4 1/2", 11.6 ppf 25CRW80ksi casing with premium connections, and will be landed 100 ft above the top of the Top Lower Mississippian upper confining layer, at an average depth of 2,820 ft. The long string will be cemented to surface in two (2) stages and will secure the upper Arbuckle reservoir, the overlying confining layers, and the saline monitoring interval. At each stage of construction, casing will be cemented to the surface as per U.S. Environmental Protection (EPA) Class VI standards, to ensure zonal isolation.

The above-zone monitoring wells are currently not planned to be perforated as all testing will be performed via indirect methods through casing with the casing pressures being monitored continuously at surface and downhole temperatures via DTS fiber optic cable. This will ensure that well integrity is maintained. If required, the casing is designed to allow for standard wireline perforating operations and equipment. A SCADA system will measure and record downhole temperatures in the Top Mississippian interval and in conjunction with

PNL (or equivalent) logging assist in monitoring the CO₂ plume's size. The monitoring system consists of running a DTS fiber optic cable (purple line on **Figure 5.3**) as the production casing is run in the hole. The cable will then be cemented into place. See permit *Section 8* for additional information regarding monitoring plan.

The following is an outline procedure describing the steps to construct the Vanguard AZM-1 (Above-Zone Monitoring Well #1):

- 1) Move in, rig up drilling rig.
- 2) Drill 20 in conductor hole to 100 ft.
- 3) RIH 100 ft of 16 in, 64lb./ft, H40 casing.
- 4) Cement conductor casing from 100 ft to surface, using Class A cement (150sx + excess).
- 5) Drill 8 1/2 in surface casing hole with freshwater spud mud to approximately 150 ft below base Vamoosa Formation.
- 6) Run open hole logs from surface casing depth TD (SCTD) to 100 ft.
- 7) RIH 7", J-55, 23lb./ft, surface casing to SCTD.
- 8) Cement surface casing from SCTD to surface using 14.5ppg, Class A cement (100sx + excess).
- 9) Install blowout preventor and pressure test.
- 10) Drill 6 1/8" hole to approximately 100 ft above Top Lower Mississippian formation (TD).
- 11) Run open hole logs from TD to surface casing shoe.
- 12) Run cased hole logs from surface casing shoe to surface.
- 13) Run 237 ft of 4 1/2 in 11.6 lb./ft, 25Cr80ksi, premium connection, casing followed by 932 ft, 4 1/2 in 11.6 lb./ft, L80, premium connection, casing complete with DTS fiber optic cable secured to the outside of the casing to casing point. Install DV tool at approx. 1,650ft. Ensure final centralizer program is followed.
- 14) Cement the 4 1/2 in casing in two (2) stages as follows:
 - a. Stage 1:
 - i. Pump 932 ft of class G, 11.8ppg, lead slurry
 - ii. Followed by 237 ft of 14.5ppg EverCrete or equivalent, tail slurry
 - b. Stage 2:
 - i. Pump 1,650 ft of Class G, 11.8ppg, to surface
- 15) WOC. RIH w. 3 3/4 in bit and drill out DV tool and clean to TD.
- 16) Run cased hole logs with baseline VDL/CBL, USIT, and temperature log from TD to surface casing shoe.
- 17) Nipple down BOP's and install wellhead.
- 18) Rig down, move out drilling rig.

Plan revision number: 0

Plan revision date: 6/24/2025

Table 5.7 Open hole diameters and intervals for Vanguard AZM-1 to AZM-12

Well	Surface Hole									
	AZM-1	AZM-2	AZM-3	AZM-4	AZM-5	AZM-6	AZM-8	AZM-9	AZM-10	AZM-12
Depth (ft TVD)	0-751	0-682	0-912	0-773	0-759	0-567	0-1,118	0-1,053	0-983	0-1059
Open Hole Diameter (inches)	8 1/2"									
Comment	Landed 150ft below base Vamoosa Formation									

Well	Long String									
	AZM-1	AZM-2	AZM-3	AZM-4	AZM-5	AZM-6	AZM-8	AZM-9	AZM-10	AZM-12
Depth (ft TVD)	2,819	2,726	2,947	2,813	2,800	2,643	3,039	3,054	2,913	3,068
Open Hole Diameter (inches)	6 1/8"									
Comment	Landed approx. 100ft above Top Lwr Miss. UCZ									

Table 5.8 Casing Specifications for Vanguard AZM-1 to AZM-12

Well	Surface Casing									
	AZM-1	AZM-2	AZM-3	AZM-4	AZM-5	AZM-6	AZM-8	AZM-9	AZM-10	AZM-12
Depth (ft TVD)	0-751	0-682	0-912	0-773	0-759	0-567	0-1,118	0-1,053	0-983	0-1,059
Outside Diameter (inches)	7									
Inside Diameter (inches)	6.366									
Weight (ppf)	23									

Plan revision number: 0
 Plan revision date: 6/24/2025

Grade (API)	J-55
Design Coupling	LT&C
Burst Strength (psi)	4,360
Collapse Strength (psi)	3,270

	Long String									
Well	AZM-1	AZM-2	AZM-3	AZM-4	AZM-5	AZM-6	AZM-8	AZM-9	AZM-10	AZM-12
Depth (ft TVD)	0-2,582	0-2,525	0-2,707	0-2,615	0-2,579	0-2,436	0-2,784	0-2,787	0-2,629	0-2,836
Outside Diameter (inches)	4 1/2"									
Inside Diameter (inches)	4									
Weight (ppf)	11.6									
Grade (API)	L-80									
Design Coupling	VAM or equivalent									
Thermal Conductivity (BTU/(h*ft*F))	?									
Burst Strength (psi)	7,780									
Collapse Strength (psi)	6,350									

	Long String - CRA									
Well	AZM-1	AZM-2	AZM-3	AZM-4	AZM-5	AZM-6	AZM-8	AZM-9	AZM-10	AZM-12
Depth (ft TVD)	2,582- 2,819	2,525- 2,726	2,707- 2,947	2,615- 2,813	2,579- 2,800	2,436- 2,643	2,784- 3,039	2,787- 3,054	2,629- 3,054	2,836- 3,068
Outside Diameter (inches)	4 1/2"									

Plan revision number: 0

Plan revision date: 6/24/2025

Inside Diameter (inches)	4
Weight (ppf)	11.6
Grade (API)	L-80
Design Coupling	VAM or equivalent
Thermal Conductivity (BTU/(h*ft*F))	?
Burst Strength (psi)	8,000
Collapse Strength (psi)	6,350

Table 5.9 Cement Specifications for Vanguard AZM-1 to AZM-12

	Surface Casing									
	AZM-1	AZM-2	AZM-3	AZM-4	AZM-5	AZM-6	AZM-8	AZM-9	AZM-10	AZM-12
Depth (ft TVD)	0-754	0-686	0-916	0-776	0-765	0-568	0-1,117	0-1,054	0-984	0-1,058
OH Diameter (in)							8 1/2			
Csg Diameter (in)							7			
Capacity (cf/ft)							0.1268			
% excess for washout							15%			
Cement Class							A			
Slurry Weight (lb/gal)							14.5			
Cement Yield (cf/sk)							1.39			
Volume (cf)	139	132	167	146	139	111	139	188	174	181

	Long String - Stage 2									
	AZM-1	AZM-2	AZM-3	AZM-4	AZM-5	AZM-6	AZM-8	AZM-9	AZM-10	AZM-12
Depth (ft TVD)							0 - 1,650			
OH Diameter (in)							6 1/8			
Csg Diameter (in)							4 1/2			
Capacity (cf/ft)							0.0942			

Plan revision number: 0

Plan revision date: 6/24/2025

% excess for washout	15%
Cement Class	G
Slurry Weight (lb/gal)	12.6
Cement Yield (cf/sk)	2.26
Volume (cf)	203

Long String - Stage 1 - Tail										
	AZM-1	AZM-2	AZM-3	AZM-4	AZM-5	AZM-6	AZM-8	AZM-9	AZM-10	AZM-12
Depth (ft TVD)	2,582- 2,819	2,525- 2,726	2,707- 2,947	2,615- 2,813	2,579- 2,800	2,436- 2,643	2,784- 3,039	2,787- 3,054	2,629- 2,913	2,836- 3,068
OH Diameter (in)	6 1/8									
Csg Diameter (in)	4 1/2									
Capacity (cf/ft)	0.0942									
% excess for washout	15%									
Cement Class	Evercrete or equivalent									
Slurry Weight (lb/gal)	14.5									
Cement Yield (cf/sk)	1.22									
Volume (cf)	49	43	49	43	43	43	49	49	49	43

Long String - Stage 1 - Lead										
	AZM-1	AZM-2	AZM-3	AZM-4	AZM-5	AZM-6	AZM-8	AZM-9	AZM-10	AZM-12
Depth (ft TVD)	1,650- 2,582	1,650- 2,525	1,650- 2,707	1,650- 2,615	1,650- 2,579	1,650- 2,436	1,650- 2,784	1,650- 2,787	1,650- 2,629	1,650- 2,836
OH Diameter (in)	6 1/8									
Csg Diameter (in)	0.0942									
Capacity (cf/ft)	0.1268									

Plan revision number: 0

Plan revision date: 6/24/2025

% excess for washout	15%									
Cement Class	G									
Slurry Weight (lb/gal)	12.6									
Cement Yield (cf/sk)	2.26									
Volume (cf)	125	113	136	124	125	113	147	147	125	147

Plan revision number: 0

Plan revision date: 6/24/2025

5.4.1 Above-Zone Monitoring Well Construction Diagrams

Below (**Figure 5.2**) is the well bore diagram (WBD) for Vanguard AZM-1. The WBD's for all injection wells can be found in **Appendix 3—Wellbore Diagrams for In-Zone Monitoring Wells**

Plan revision number: 0
 Plan revision date: 6/24/2025

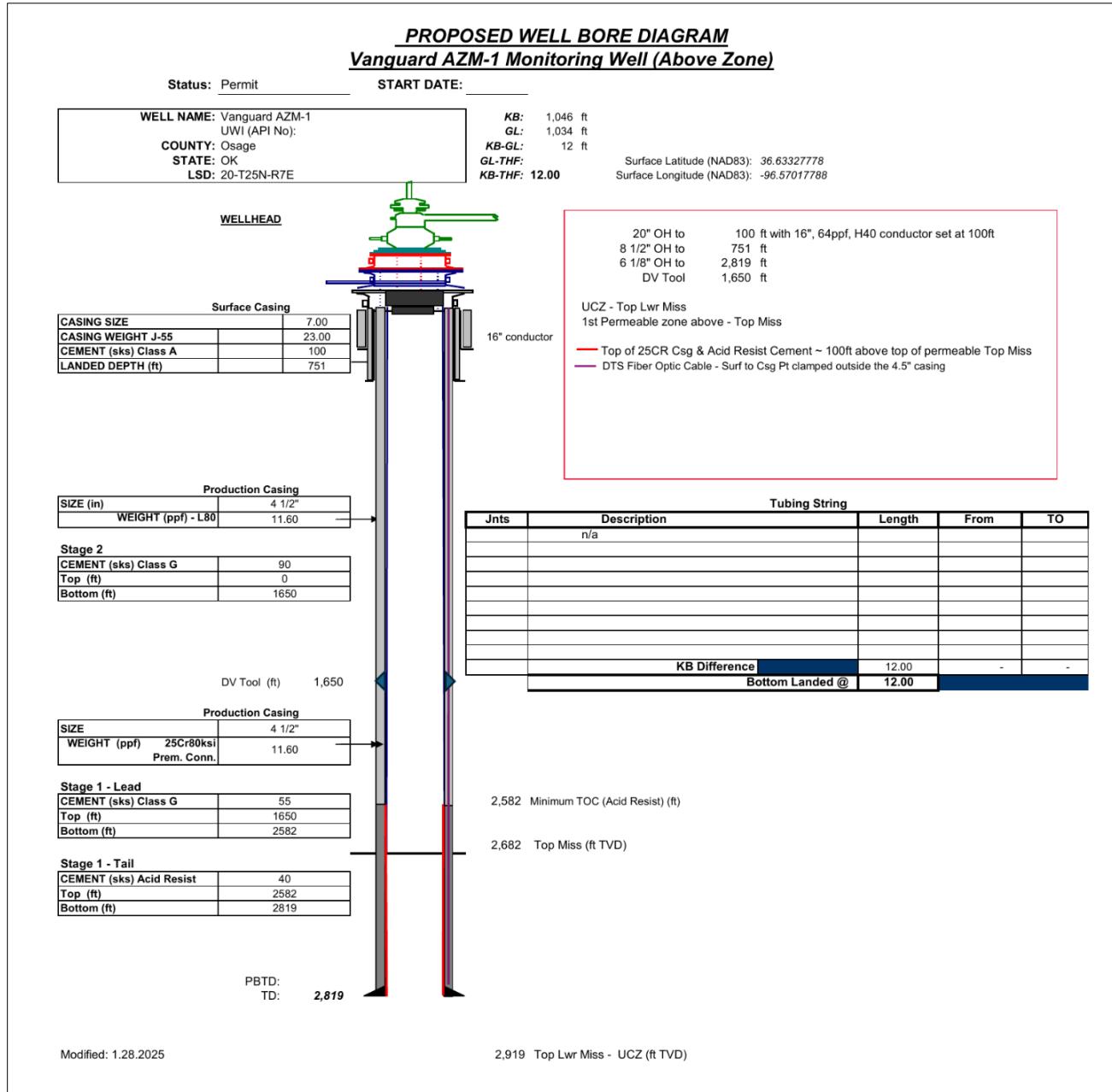


Figure 5.2 Vanguard AZM-1 (above-zone monitoring well) WBD

5.5 In-Zone Monitoring Wells

NexGen plans to drill and complete seven (7) in-zone monitoring wells, identified as Vanguard IZM-1 through Vanguard IZM-7, to monitor the injection zone within the upper Arbuckle Group and the interval above the confining zone in the upper Mississippian Formation. The wells will be completed with fiber optic cables for continuous monitoring purposes. These IZM wells will be strategically positioned near the edges of the estimated CO₂ plume around the 12 injection wells to detect any signs of CO₂ within the injection zone or migration beyond the Upper Confining

Zone. The proposed designs for IZM 1-7 are shown in **Appendix 3—Wellbore Diagrams for In-Zone Monitoring Wells**. For more information on fiber optic cables, see *Section 8* of the permit application.

The in-zone monitoring wells are designed to be completed at an average depth of ~3,570 ft TVD, within the upper 60% of the Arbuckle Group injection zone.

The well design includes a 100 ft conductor pipe (16 in.), followed by 600–1,100 ft of API 7 in., 23 lbm/ft, J-55 surface casing extending 150 ft below the base of the Vamoosa Formation (at each location), identified as the lowermost possible base of the USDW.

The long string casing will consist of API 4 ½ in., 11.6 lbm/ft, L-80 casing landed approximately 100 ft above the Top Basement at an average depth of 3,900 ft. The long string will be cemented to surface in two (2) stages and will secure the upper Arbuckle reservoir, the overlying confining layers, and the saline monitoring interval. At each stage of construction, casing will be cemented to the surface as per U.S. Environmental Protection (EPA) Class VI standards, to ensure zonal isolation.

The in-zone monitoring wells are currently not planned to be perforated as all testing will be performed via indirect methods through casing with the casing pressures being monitored continuously at surface and downhole to ensure that well integrity is maintained. If required, the casing is designed to allow for standard wireline perforating operations and equipment. A SCADA system will measure and record downhole temperatures and pressures at the top of the injection interval, and at TD, and assist in monitoring the CO₂ plume's size. The monitoring system consists of running a fiber optic cable (purple line on **Figure 5.3**) as the casing is run in the hole. The cable will then be cemented into place. See permit *Section 8* for additional information regarding monitoring plan.

The following is an outline procedure describing the steps to construct the Vanguard IZM-1 (In-Zone Monitoring Well #1):

- 1) Move in, rig up drilling rig.
- 2) Drill 20in conductor hole to 100 ft.
- 3) RIH 100 ft of 16 in, 64lb./ft, H40 casing.
- 4) Cement conductor casing from 100 ft to surface, using Class A cement (150sx + excess).
- 5) Drill 8 ½in surface casing hole with freshwater spud mud to approximately 150 ft below base Vamoosa Formation.
- 6) Run open hole logs from surface casing depth TD (SCTD) to 100 ft.
- 7) RIH 7", J-55, 23lb./ft, surface casing to SCTD.
- 8) Cement surface casing from SCTD to surface using 14.5ppg, Class A cement (100sx + excess).
- 9) Install blowout preventor and pressure test.
- 10) Drill 6 1/8" hole to approximately 100 ft above Top Basement formation (TD).
- 11) Run open hole logs from TD to surface casing shoe.
- 12) Run cased hole logs from surface casing shoe to surface.
- 13) Run 4 ½" 11.6 lb./ft, L80, premium connection, casing complete with DTS fiber optic cable secured to the outside of the casing, to TD. Install and run 2 sets of cemented

perforated behind casing bottomhole gauges, run on TEC, landed at Top Arbuckle and immediately above float shoe. Install DV tool at approx. 1,650 ft. Ensure the final centralizer program is followed.

- 14) Cement the 4 1/2 in casing in two (2) stages as follows:
 - a. Stage 1:
 - i. Pump 1,208 ft of class G, 11.8ppg, lead slurry
 - ii. Followed by 1,226 ft of 14.5ppg EverCrete or equivalent, tail slurry
 - b. Stage 2:
 - i. Pump 1,650 ft of Class G, 11.8ppg, to surface
- 15) WOC. RIH w. 3 3/4in bit and drill out DV tool and clean to TD.
- 16) Run cased hole logs with baseline VDL/CBL, USIT, and temperature log from TD to surface casing shoe.
- 17) Nipple down BOP's and install wellhead.
- 18) Rig down, move out drilling rig.

Table 5.10 Open hole diameters and intervals for Vanguard IZM-1 to IZM-7

Surface Hole							
Well	IZM-1	IZM-2	IZM-3	IZM-4	IZM-5	IZM-6	IZM-7
Depth (ft TVD)	0-760	0-273	0-945	0-577	0-1,218	0-1,014	0-1,025
Open Hole Diameter (inches)	8 1/2						
Comment	Landed 150ft below base Vamoosa Formation						

Long String							
	IZM-1	IZM-2	IZM-3	IZM-4	IZM-5	IZM-6	IZM-7
Depth (ft TVD)	4,085	3,287	3,926	3,592	4,239	4,055	4,053
Open Hole Diameter (inches)	6 1/8						
Comment	Landed approx. 100ft above Basement						

Table 5.11 Casing specifications for Vanguard IZM-1 to IZM-7

Long String							
Well	IZM-1	IZM-2	IZM-3	IZM-4	IZM-5	IZM-6	IZM-7
Depth (ft TVD)	4,085	3,287	3,926	3,592	4,239	4,055	4,053
Outside Diameter (inches)	4 1/2"						
Inside Diameter (inches)	4						
Weight (ppf)	11.6						
Grade (API)	L-80						
Design Coupling	VAM or equivalent						
Thermal Conductivity (BTU/(h*ft*F))	?						
Burst Strength (psi)	7,780						

Collapse Strength (psi)	6,350
--------------------------------	-------

Long String - CRA							
Well	IZM-1	IZM-2	IZM-3	IZM-4	IZM-5	IZM-6	IZM-7
Depth (ft TVD)							
Outside Diameter (inches)				7			
Inside Diameter (inches)				6.276			
Weight (ppf)				26			
Grade (API)				25Cr-80ksi			
Design Coupling				VAM or equivalent			
Thermal Conductivity (BTU/(h*ft*F))				8.089			
Burst Strength (psi)				7,450			

Table 5.12 Cement specifications for Vanguard IZM-1 to IZM-7

	Surface Casing						
	IZM-1	IZM-2	IZM-3	IZM-4	IZM-5	IZM-6	IZM-7
Depth (ft TVD)	0-760	0-273	0-945	0-577	0-1,218	0-1,014	0-1,025
OH Diameter (in)				8 1/2			
Csg Diameter (in)				7			
Capacity (cf/ft)				0.1268			
% excess for washout				15%			
Cement Class				A			
Slurry Weight (lb/gal)				14.5			
Cement Yield (cf/sk)				1.39			
Volume (cf)	139	70	167	111	209	174	181

	Long String - Stage 2						
	IZM-1	IZM-2	IZM-3	IZM-4	IZM-5	IZM-6	IZM-7
Depth (ft TVD)				0 - 1,650			
OH Diameter (in)				6 1/8			
Csg Diameter (in)				4 1/2			
Capacity (cf/ft)				0.0942			
% excess for washout				15%			
Cement Class				G			
Slurry Weight (lb/gal)				12.6			
Cement Yield (cf/sk)				2.26			
Volume (cf)				203			

Long String - Stage 1 - Lead							
	IZM-1	IZM-2	IZM-3	IZM-4	IZM-5	IZM-6	IZM-7
Depth (ft TVD)	1,650- 2,858	1,650- 2,431	1,650- 2,837	1,650- 2,645	1,650- 3,139	1,650- 2,929	1,650- 2,906
OH Diameter (in)	6 1/8						
Csg Diameter (in)	4 1/2						
Capacity (cf/ft)	0.0942						
% excess for washout	15%						
Cement Class	G						
Slurry Weight (lb/gal)	12.6						
Cement Yield (cf/sk)	2.26						
Volume (cf)	159	113	147	136	181	158	158

Long String - Stage 1 - Tail (Evercrete or equiv)							
	IZM-1	IZM-2	IZM-3	IZM-4	IZM-5	IZM-6	IZM-7
Depth (ft TVD)	2,858- 4,085	2,431- 3,287	2,837- 3,926	2,645- 3,592	3,139- 4,239	2,929- 4,055	2,906- 4,053
OH Diameter (in)	6 1/8						
Csg Diameter (in)	4 1/2						
Capacity (cf/ft)	0.0942						
% excess for washout	15%						
Cement Class	Evercrete or equivalent						
Slurry Weight (lb/gal)	14.5						
Cement Yield (cf/sk)	1.22						
Volume (cf)	153	116	141	122	141	140	147

5.5.1 In-zone Monitoring Well Construction Diagram

Below (**Figure 5.3**) is the well bore diagram (WBD) for Vanguard IZM-1. The WBD's for all in-zone monitoring wells can be found in **Appendix 3—Wellbore Diagrams for In-Zone Monitoring Wells**

Plan revision number: 0
Plan revision date: 6/24/2025

PROPOSED WELL BORE DIAGRAM
IZM -1 Monitoring Well (In Zone)

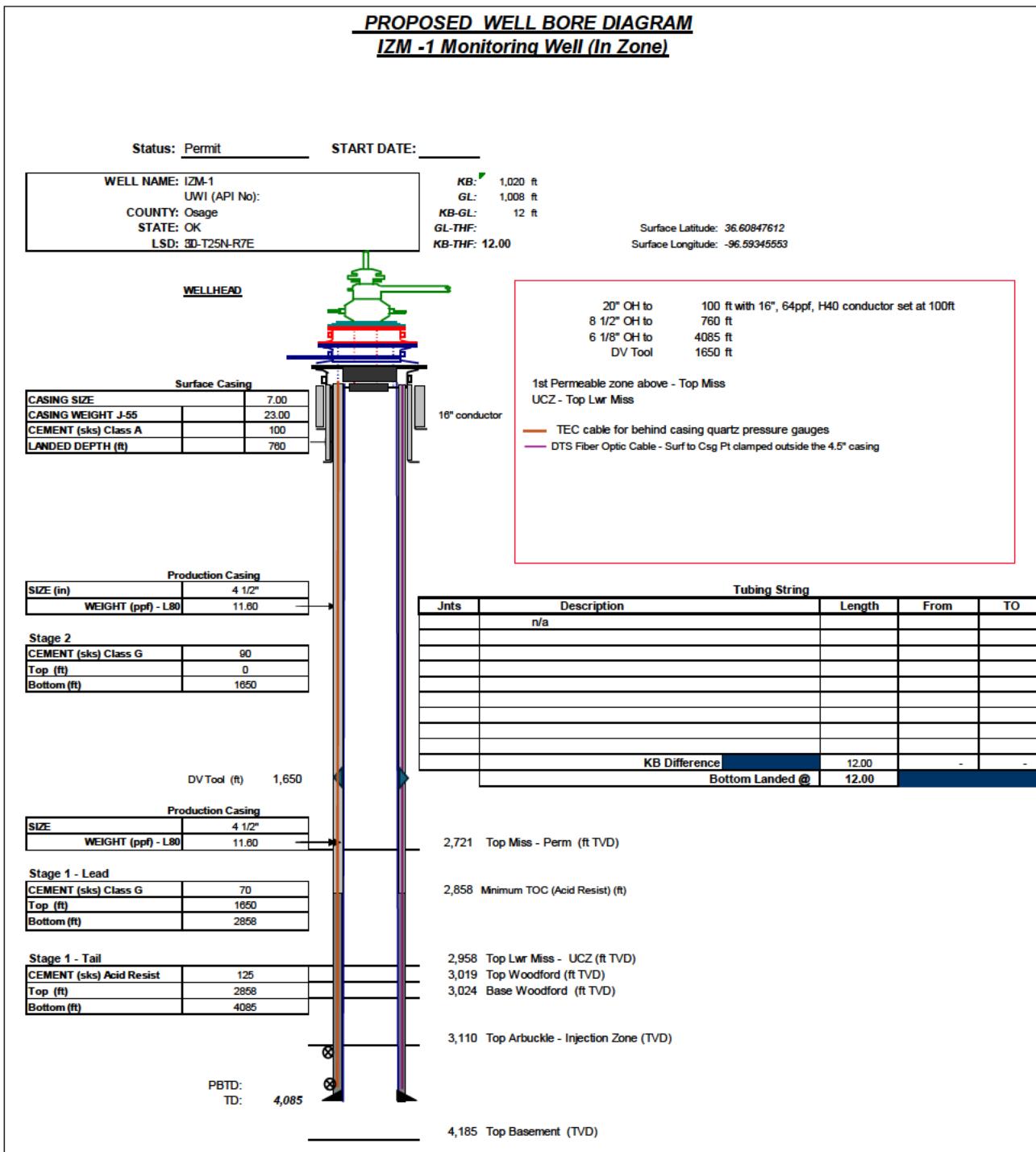


Figure 5.3 Vanguard IZM-1 (in-zone monitoring well) WBD

5.6 Near Surface Monitoring Wells

NexGen plans to drill and complete ten (10) groundwater and shallow seismic monitoring wells labeled Vanguard GWM-1 through Vanguard GWM-10. These wells will be located 150 ft due east of the AZM wells. These wells are further detailed in permit *Section 8.9* and illustrated in 5-4. Each GWM well will have a 6-inch hole diameter drilled to an average of 400 ft TVD. They will include the following components: two (2) 1.4-inch PVC cementation pipes, one (1) 0.6-inch seismic sensor line, one (1) 1.85-inch water probe sensor, and one (1) 2-inch PVC casing. The water quality probe will be installed within a slotted screen at a depth determined by logging data, as shown in **Figure 5.4**. A seismometer will be cemented at the bottom of the well to optimize coupling with the bedrock. NexGen will use services provided by Baker Hughes or an equivalent provider.

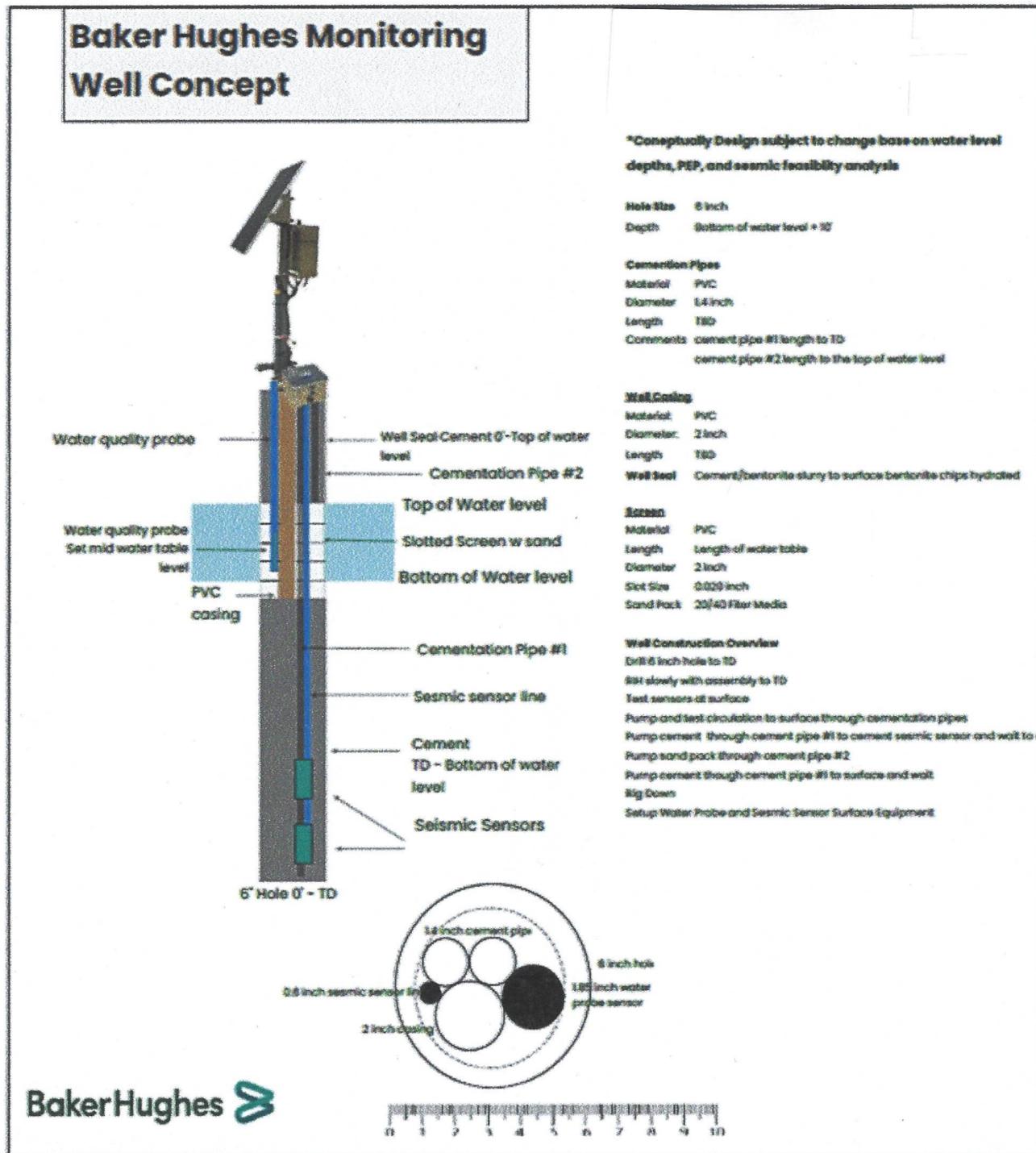


Figure 5.4 Vanguard GWM-1 (groundwater and seismic monitoring well) WBD

Plan revision number: 0
Plan revision date: 6/24/2025

Appendix 1—Wellbore Diagrams for Injection Wells²

² NTD: All wellbore diagrams here -
<https://www.dropbox.com/scl/fo/ck79k9u2v1ureuoqjzzw8/AGdW042arBVOJSKD9SHb6p8?rlkey=t9st1vkhuuk5omyv5sz6s05be&dl=0>

Plan revision number: 0
Plan revision date: 6/24/2025

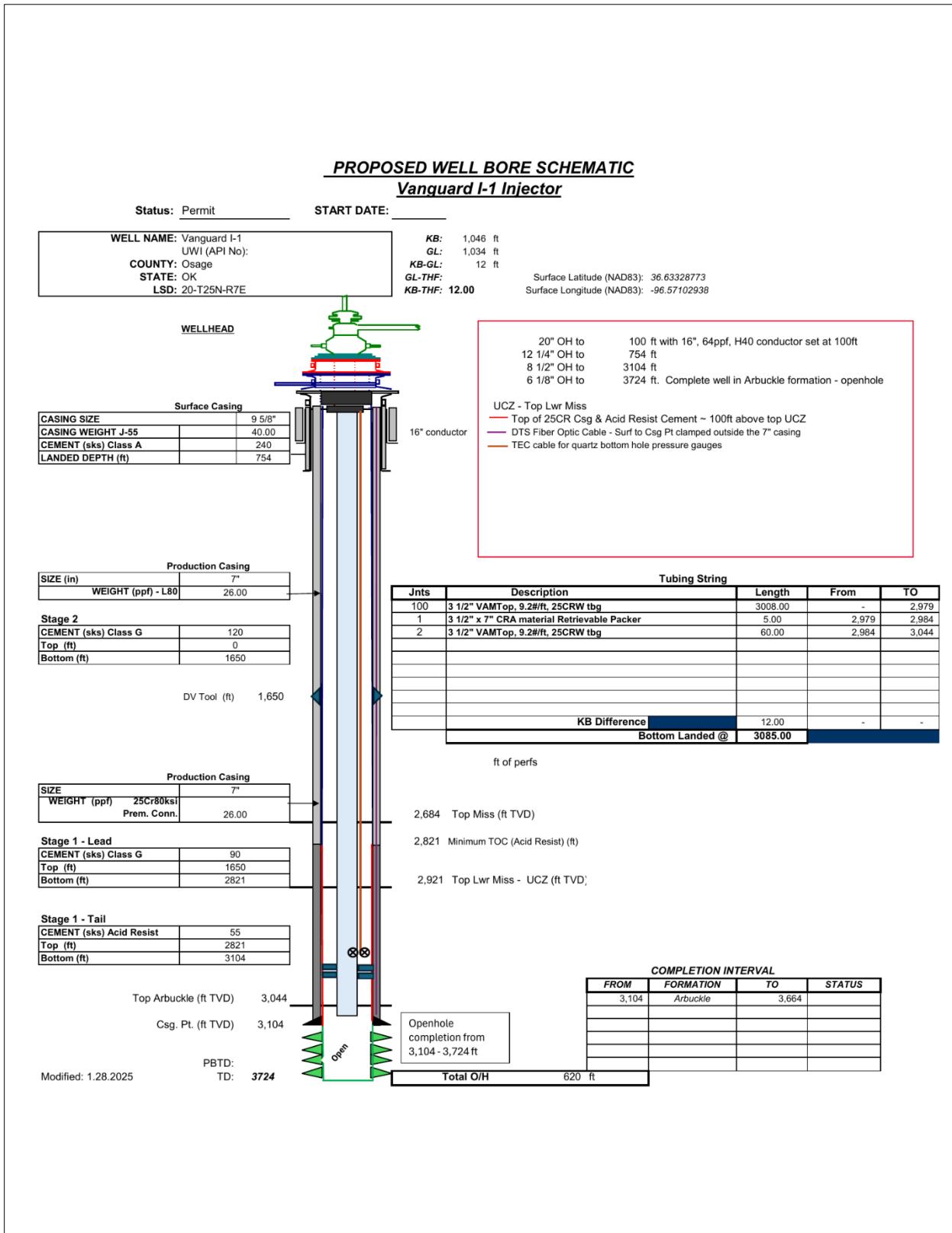


Figure 5.5—Planned well construction diagram for the Vanguard I-1 Injector.

Plan revision number: 0

Plan revision date: 6/24/2025

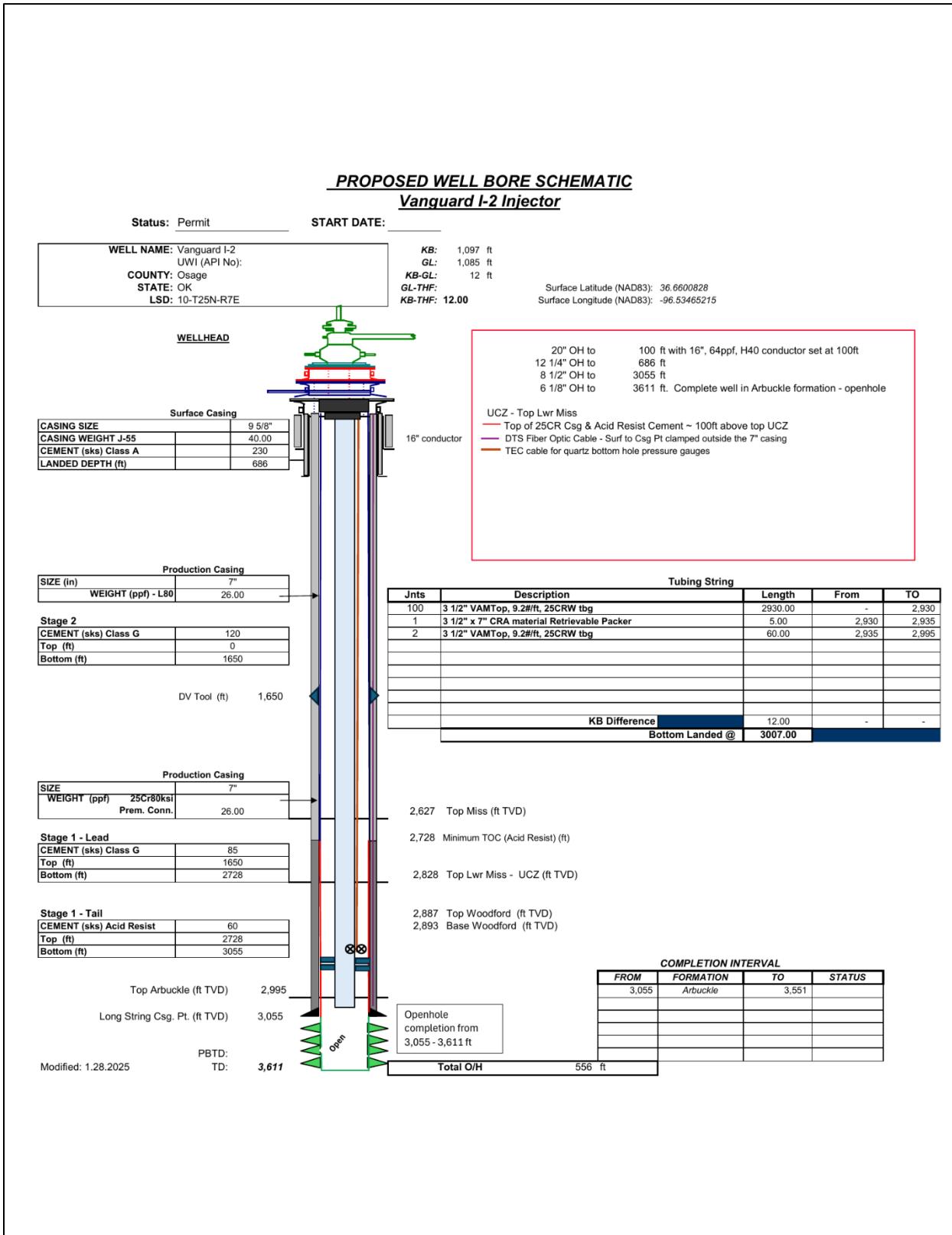


Figure 5.6—Planned well construction diagram for the Vanguard I-2 Injector.

Plan revision number: 0
Plan revision date: 6/24/2025

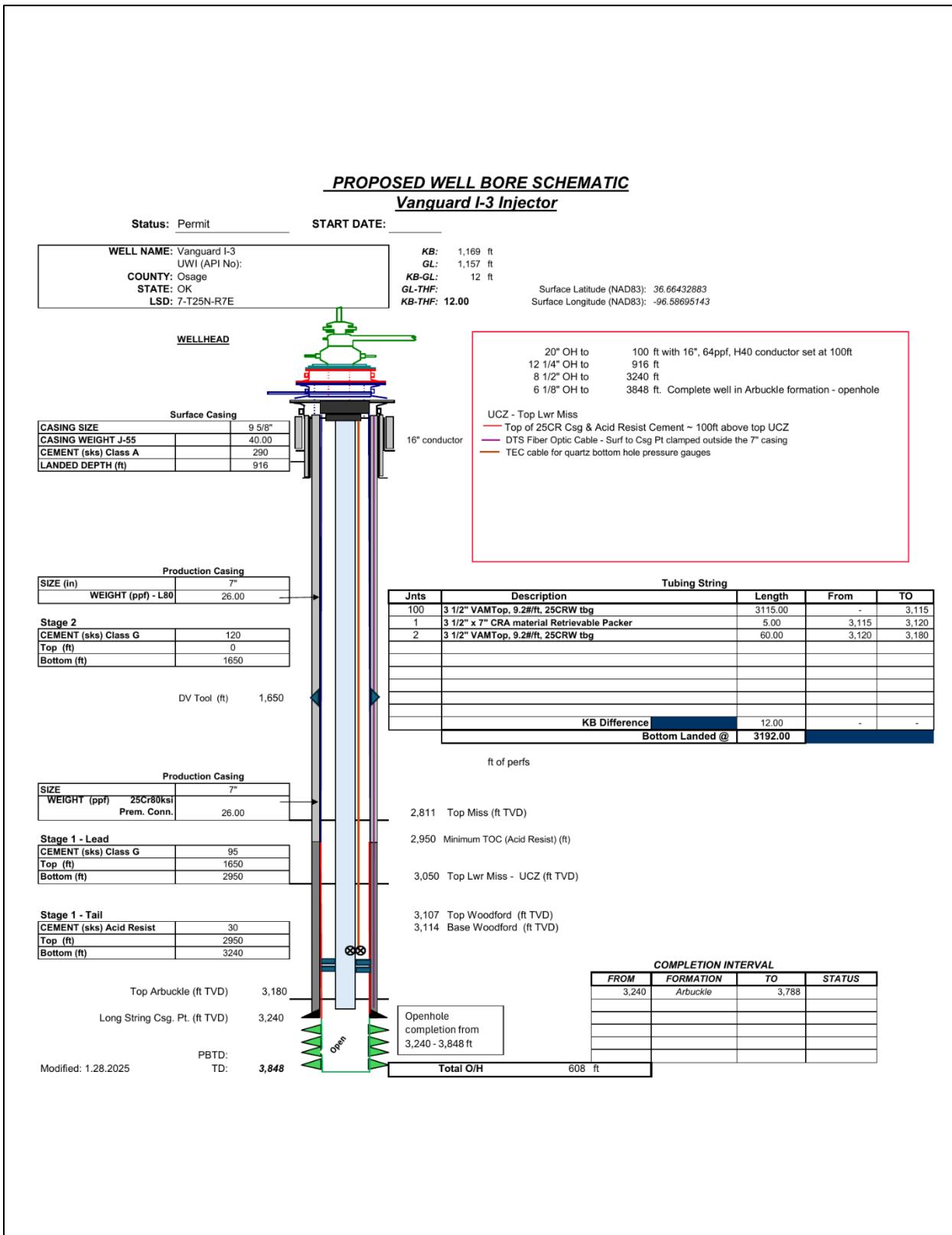


Figure 5.7—Planned well construction diagram for the Vanguard I-3 Injector.

Plan revision number: 0
Plan revision date: 6/24/2025

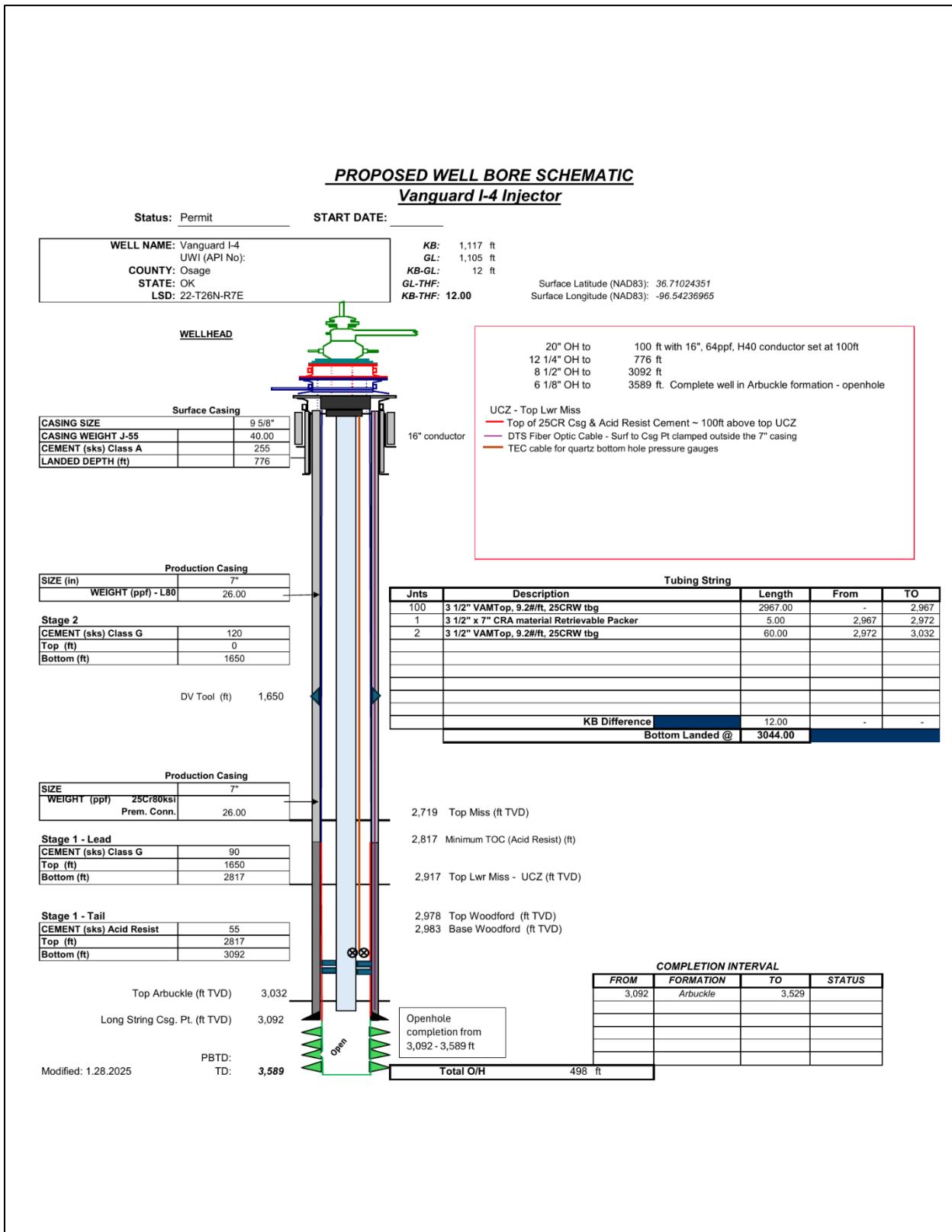


Figure 5.8—Planned well construction diagram for the Vanguard I-4 Injector.

Plan revision number: 0

Plan revision date: 6/24/2025

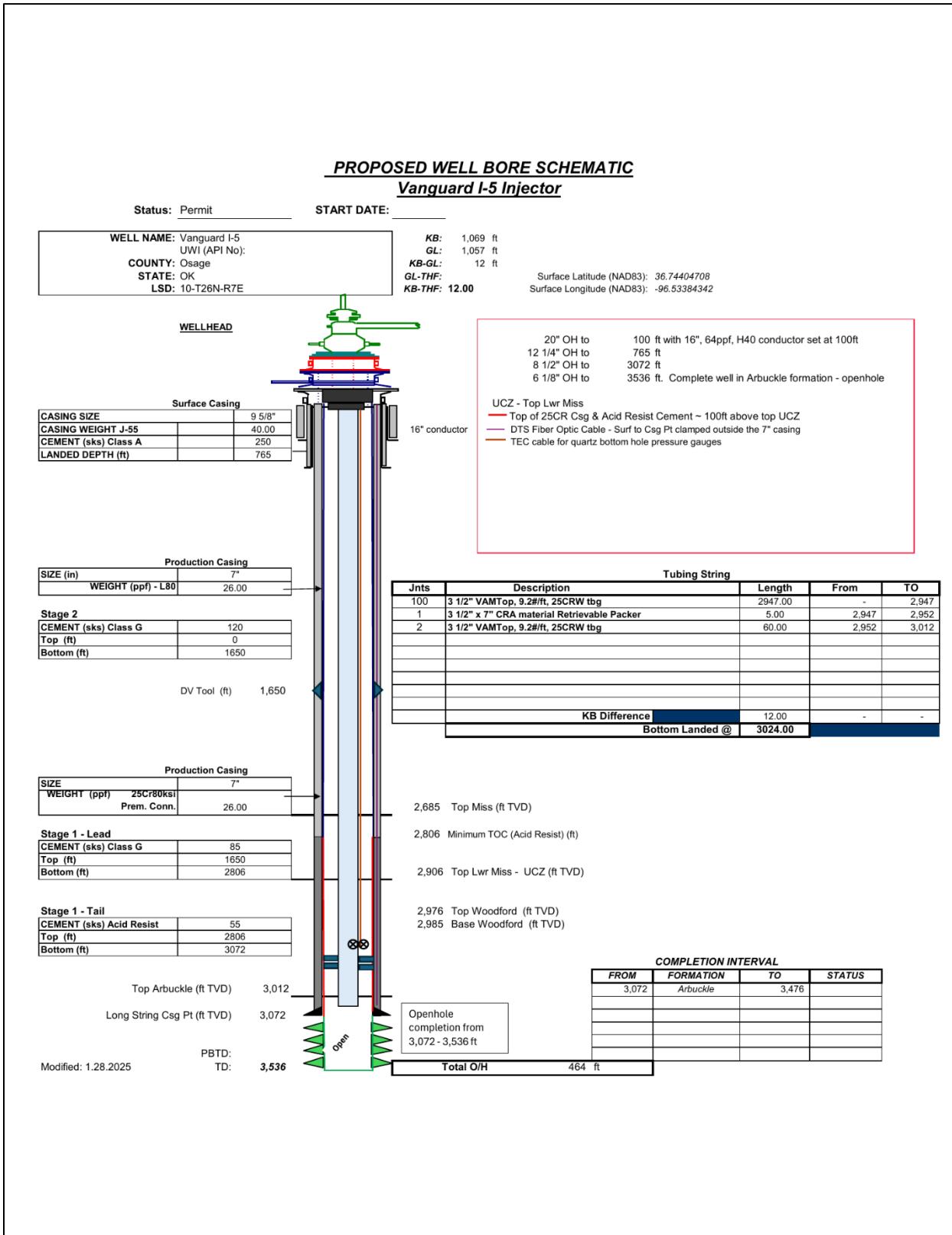


Figure 5.9—Planned well construction diagram for the Vanguard I-5 Injector.

Plan revision number: 0
Plan revision date: 6/24/2025

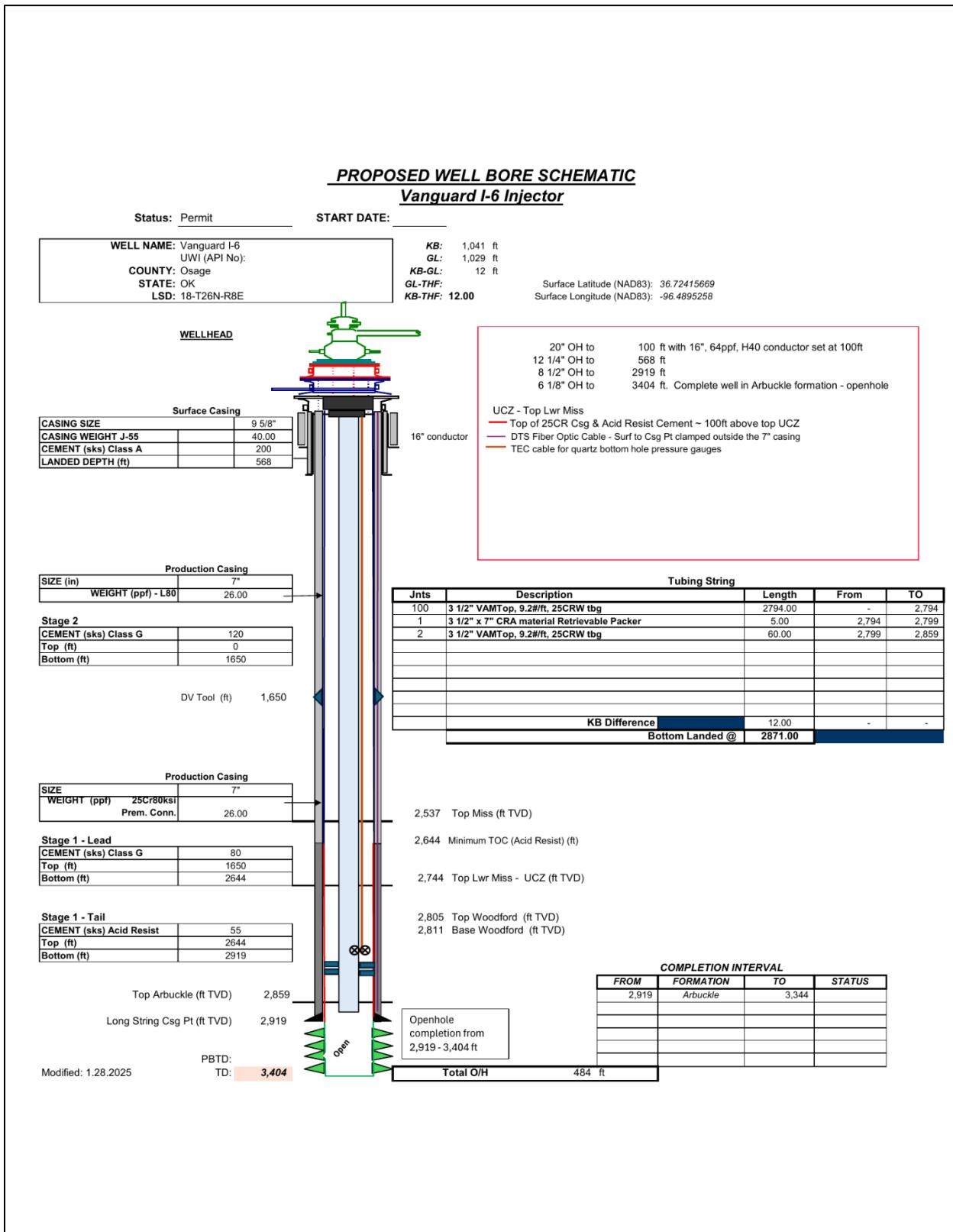


Figure 5.10—Planned well construction diagram for the Vanguard I-6 Injector.

Plan revision number: 0
Plan revision date: 6/24/2025

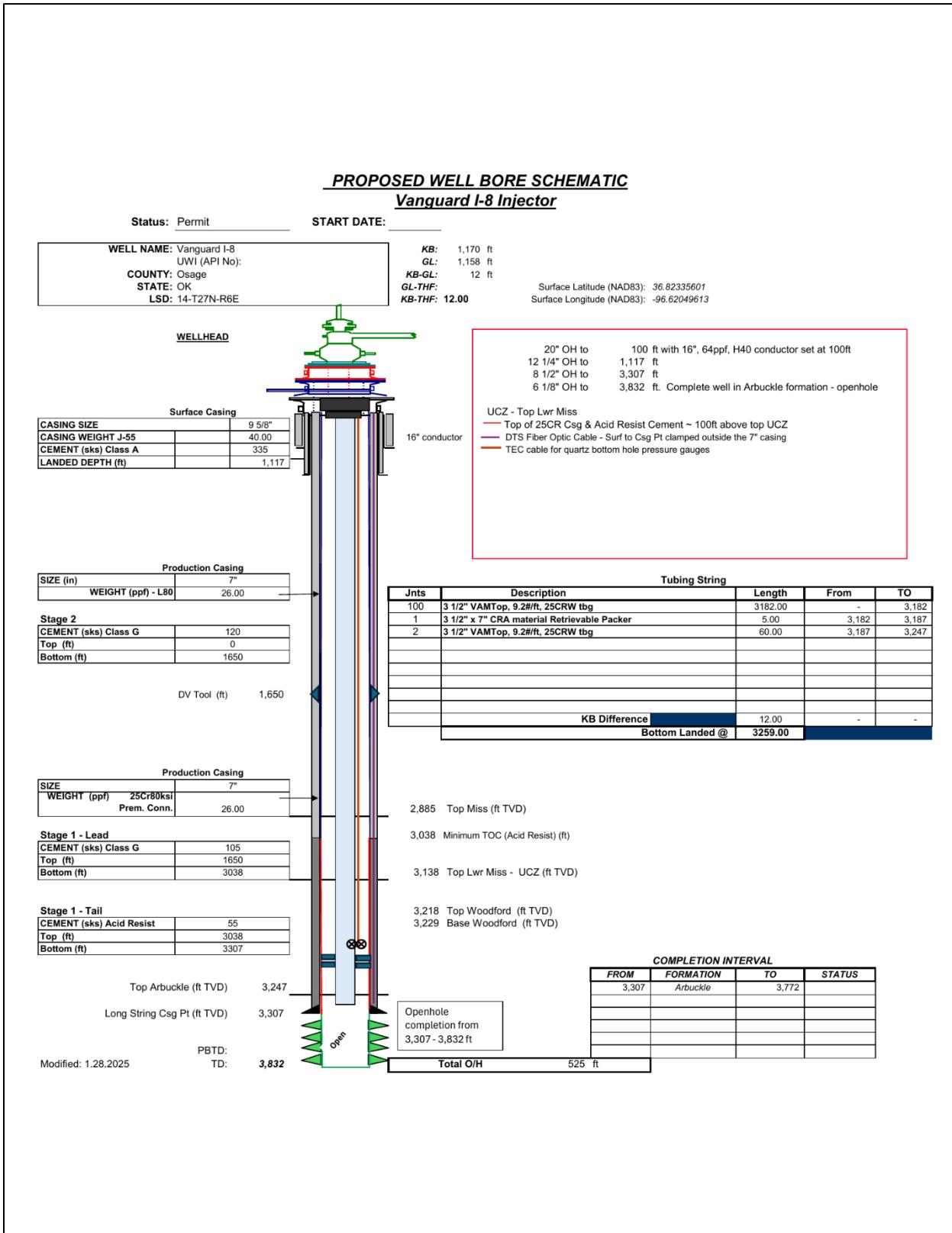


Figure 5.11—Planned well construction diagram for the Vanguard I-8 Injector.

Plan revision number: 0
Plan revision date: 6/24/2025

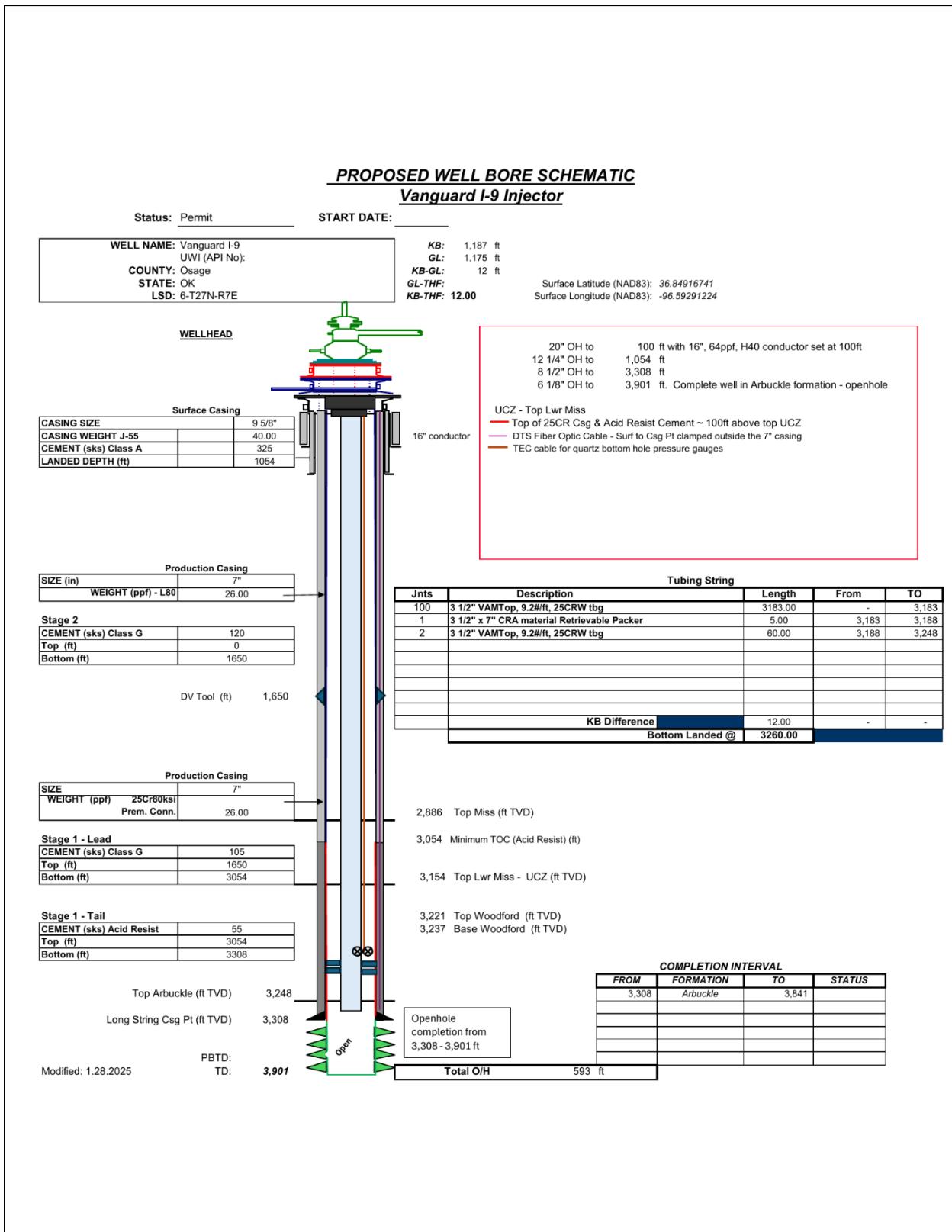


Figure 5.12—Planned well construction diagram for the Vanguard I-9 Injector.

Plan revision number: 0
Plan revision date: 6/24/2025

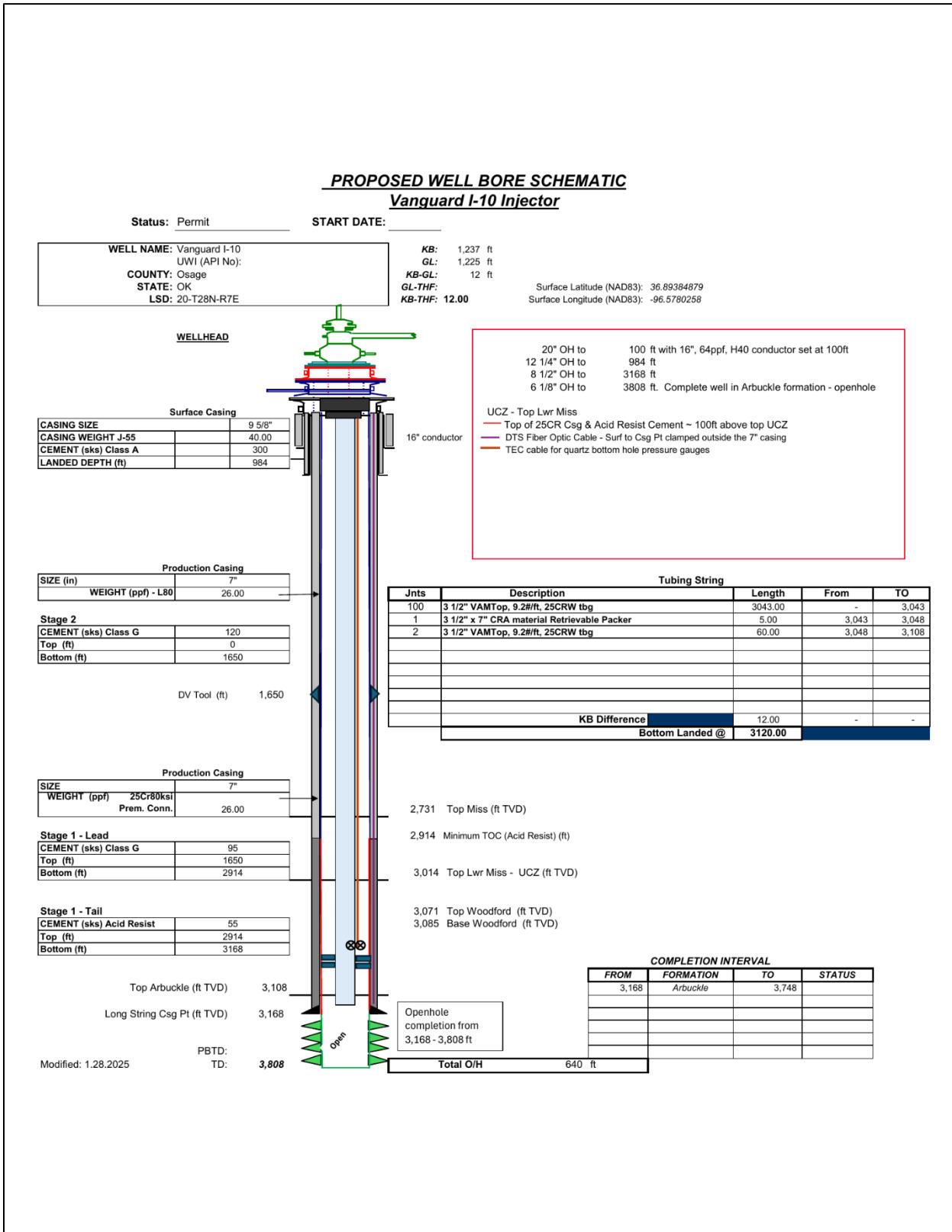


Figure 5.13—Planned well construction diagram for the Vanguard I-10 Injector.

Plan revision number: 0
Plan revision date: 6/24/2025

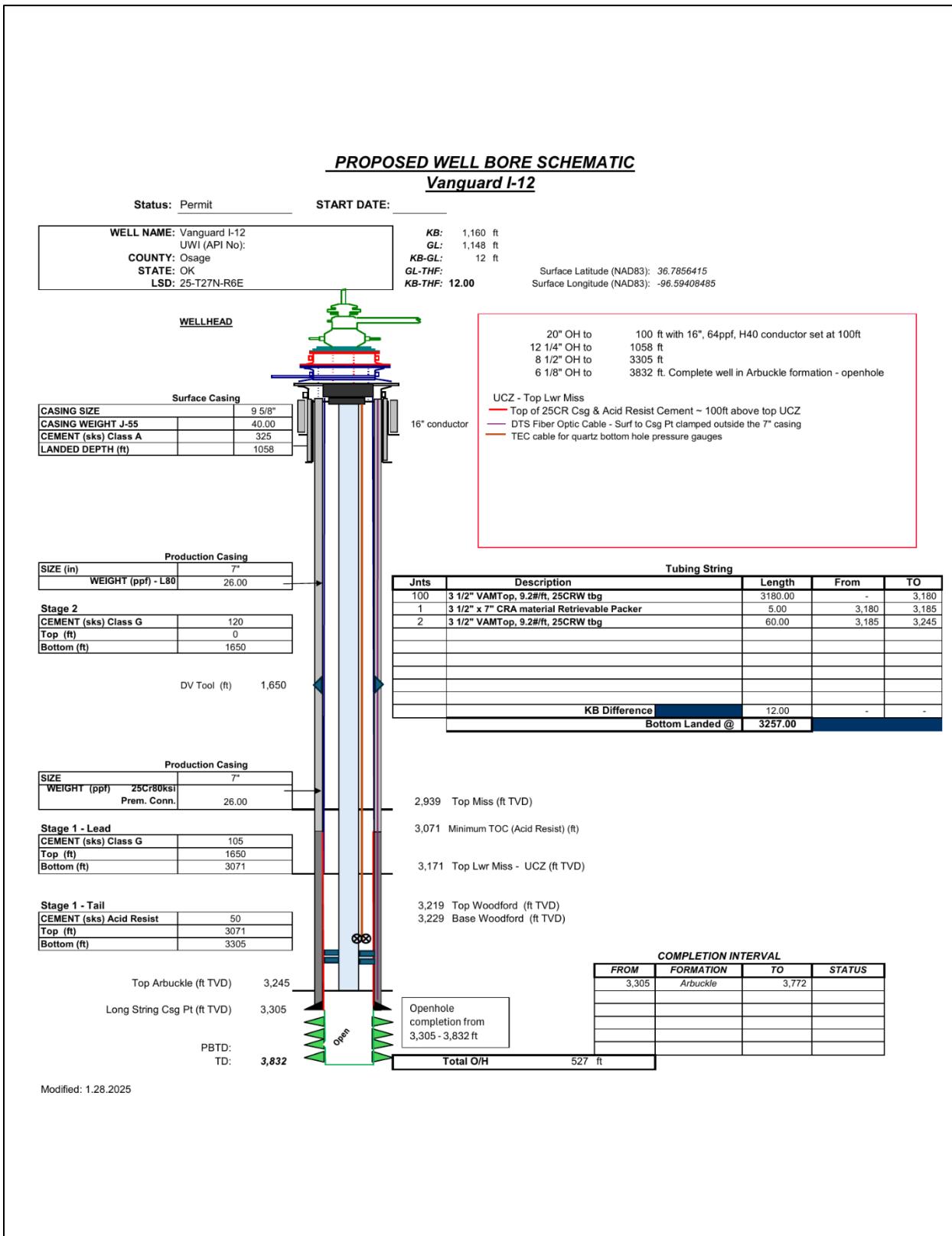


Figure 5.14—Planned well construction diagram for the Vanguard I-12 Injector.

Plan revision number: 0

Plan revision date: 6/24/2025

Appendix 2—Wellbore Diagrams for Above-Zone Monitoring Wells

Plan revision number: 0
Plan revision date: 6/24/2025

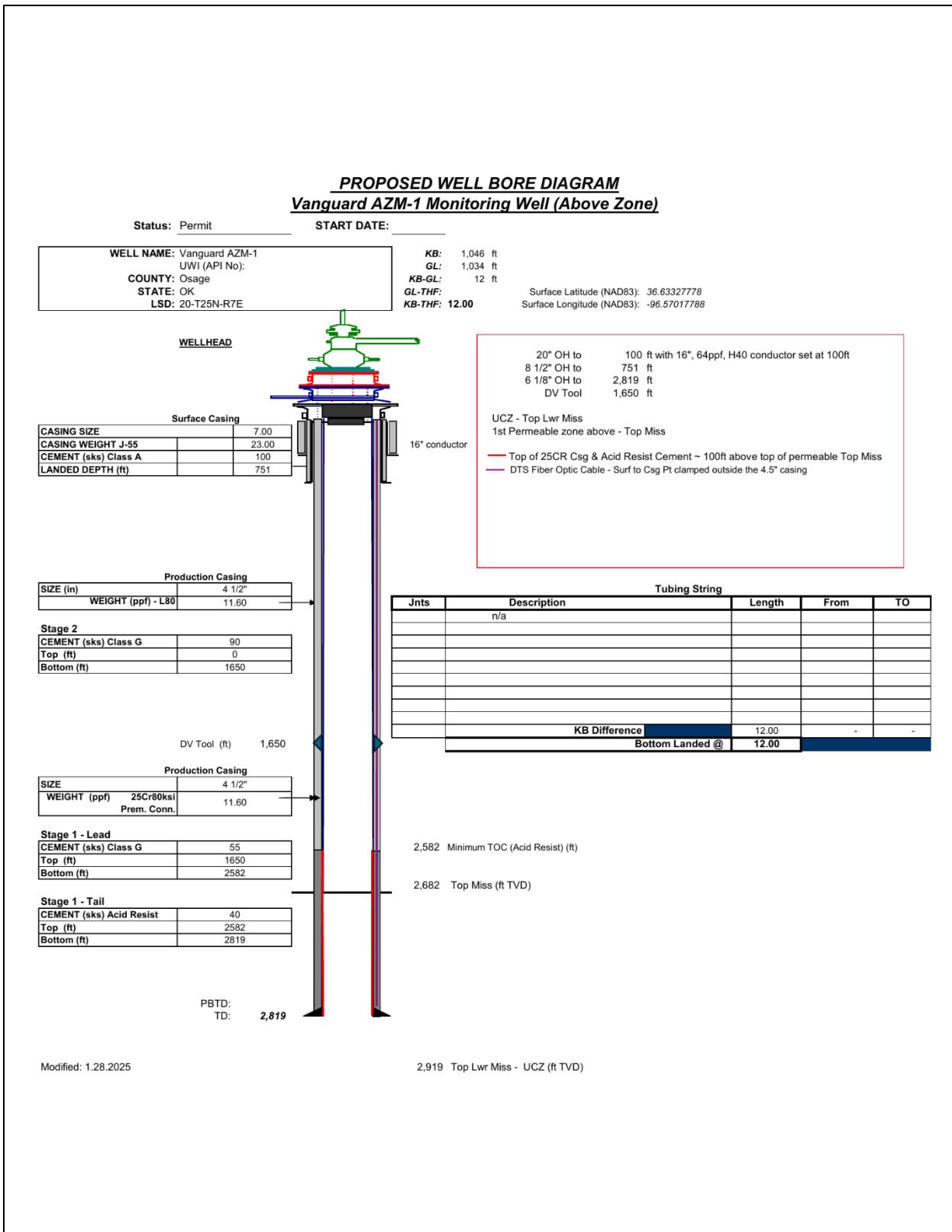


Figure 5.15—Planned well construction diagram for the Vanguard AZM-1 Monitoring Well (Above-Zone).

Plan revision number: 0
Plan revision date: 6/24/2025

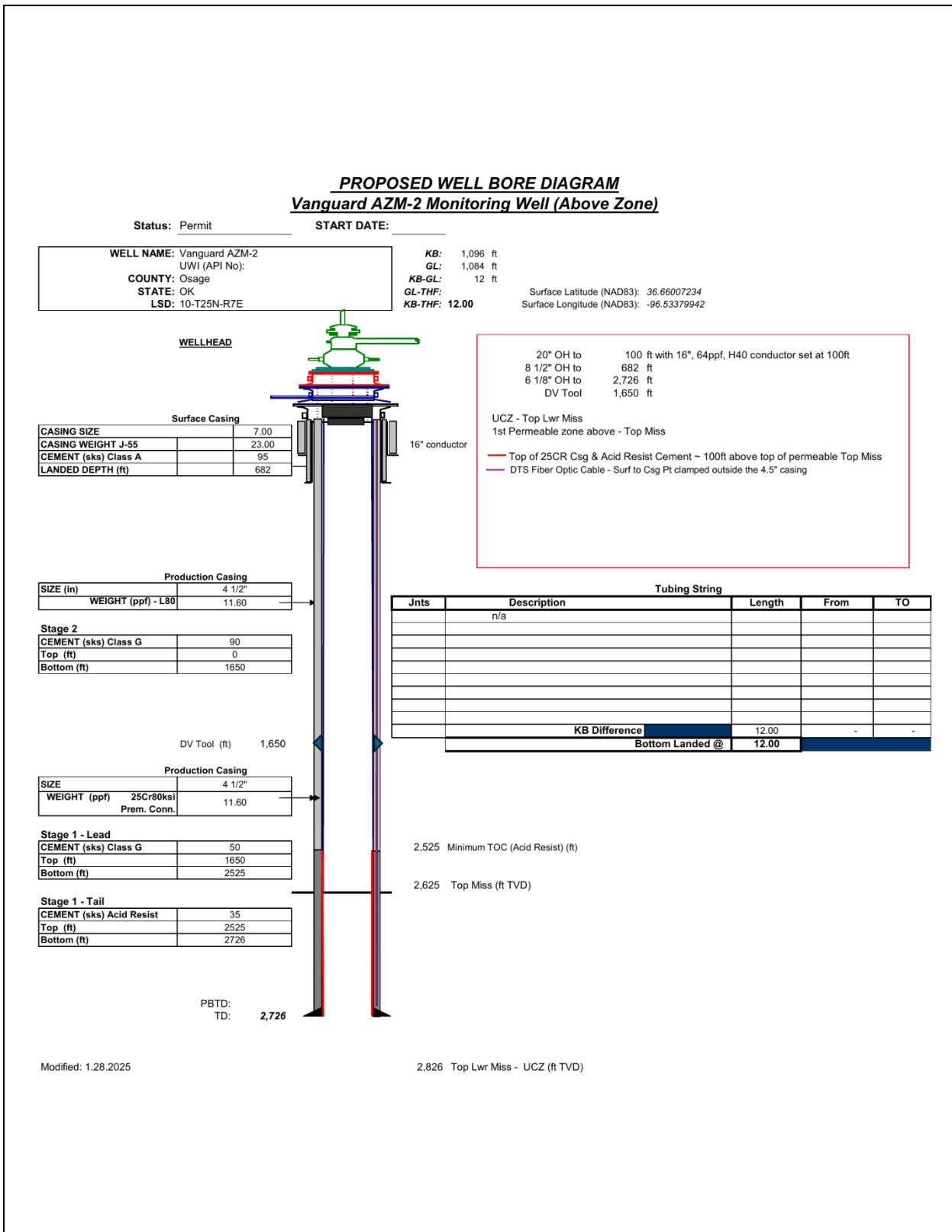


Figure 5.16—Planned well construction diagram for the Vanguard AZM-2 Monitoring Well (Above-Zone).

Plan revision number: 0
 Plan revision date: 6/24/2025

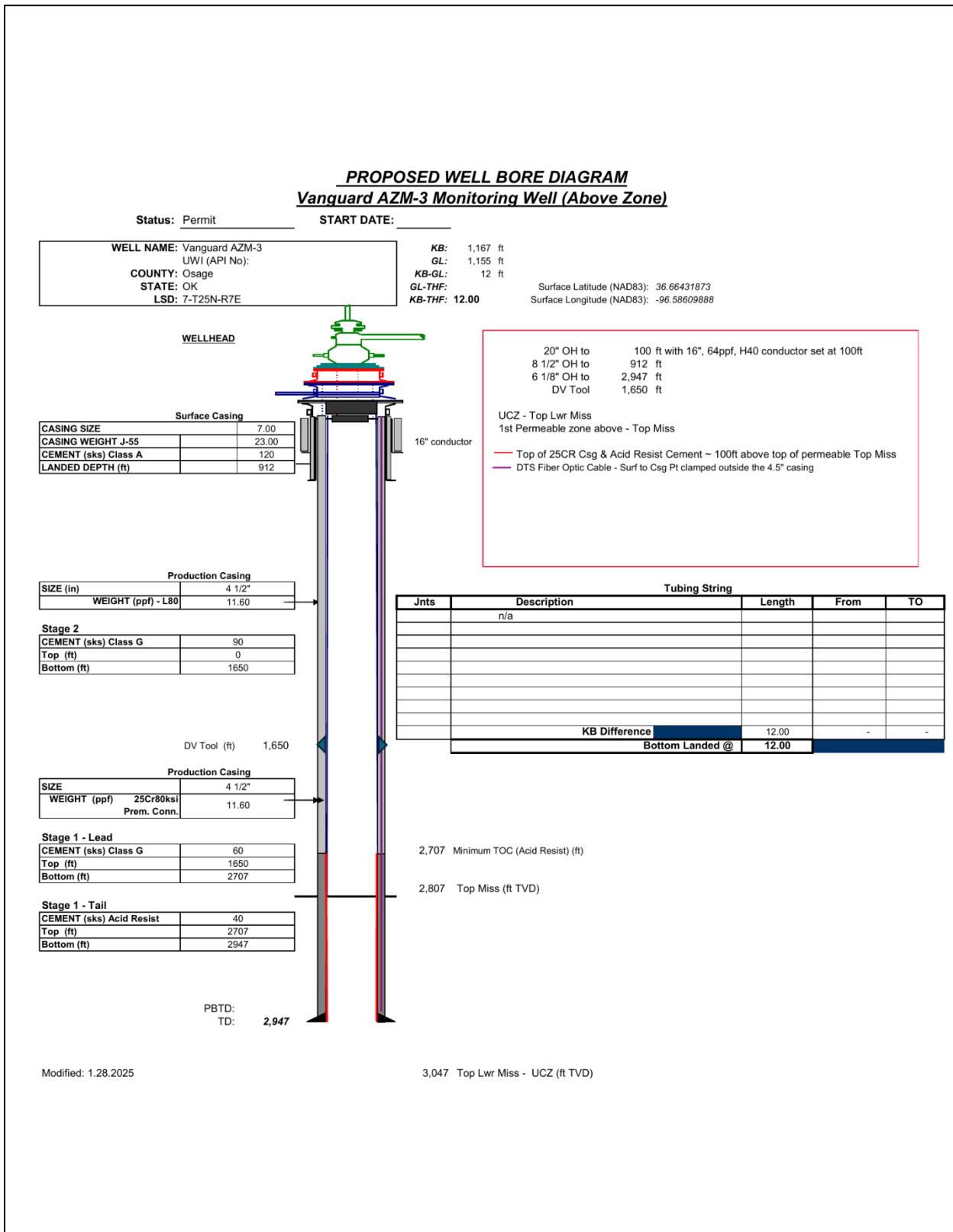


Figure 5.17—Planned well construction diagram for the Vanguard AZM-3 Monitoring Well (Above-Zone).

Plan revision number: 0
Plan revision date: 6/24/2025

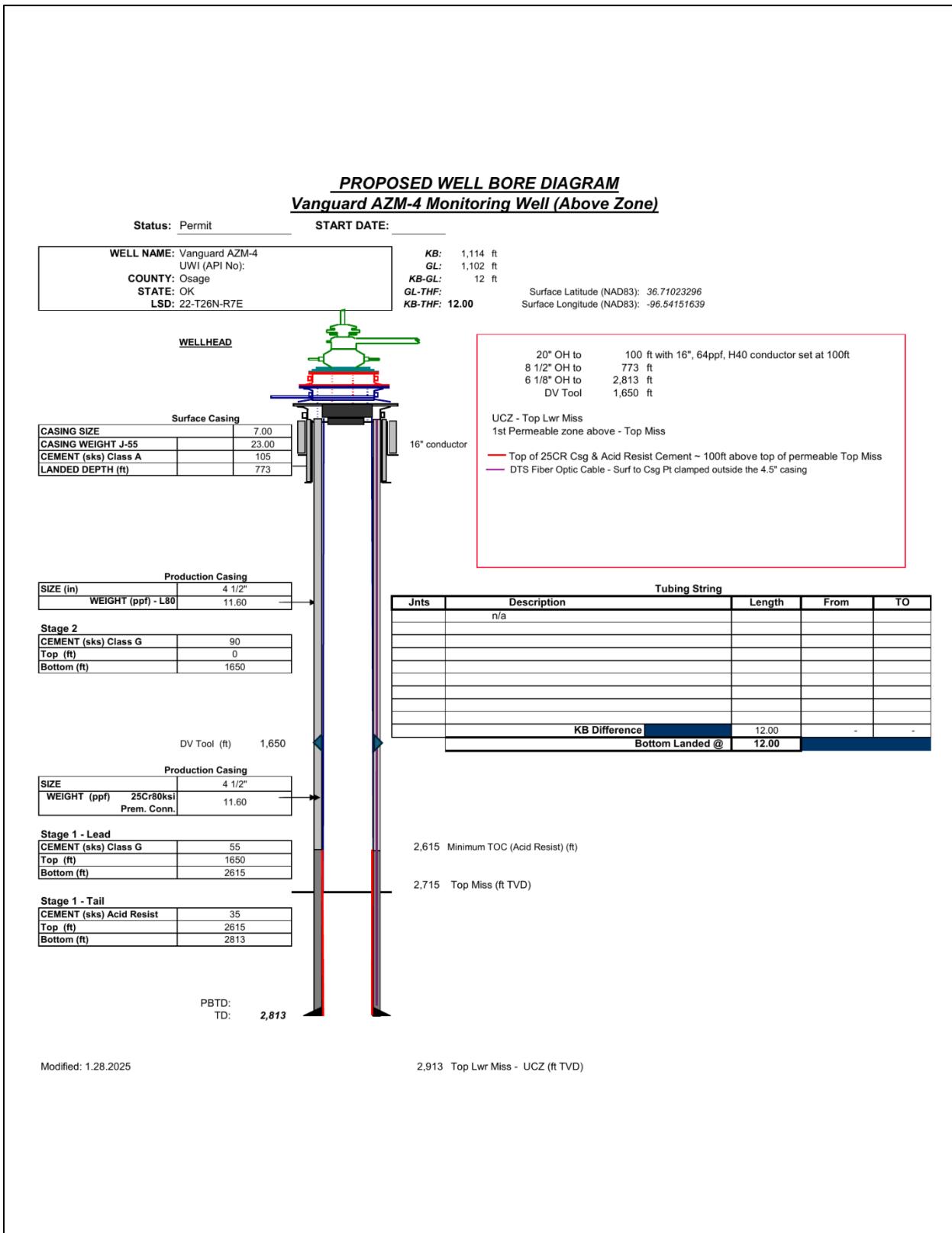


Figure 5.18—Planned well construction diagram for the Vanguard AZM-4 Monitoring Well (Above-Zone).

Plan revision number: 0
Plan revision date: 6/24/2025

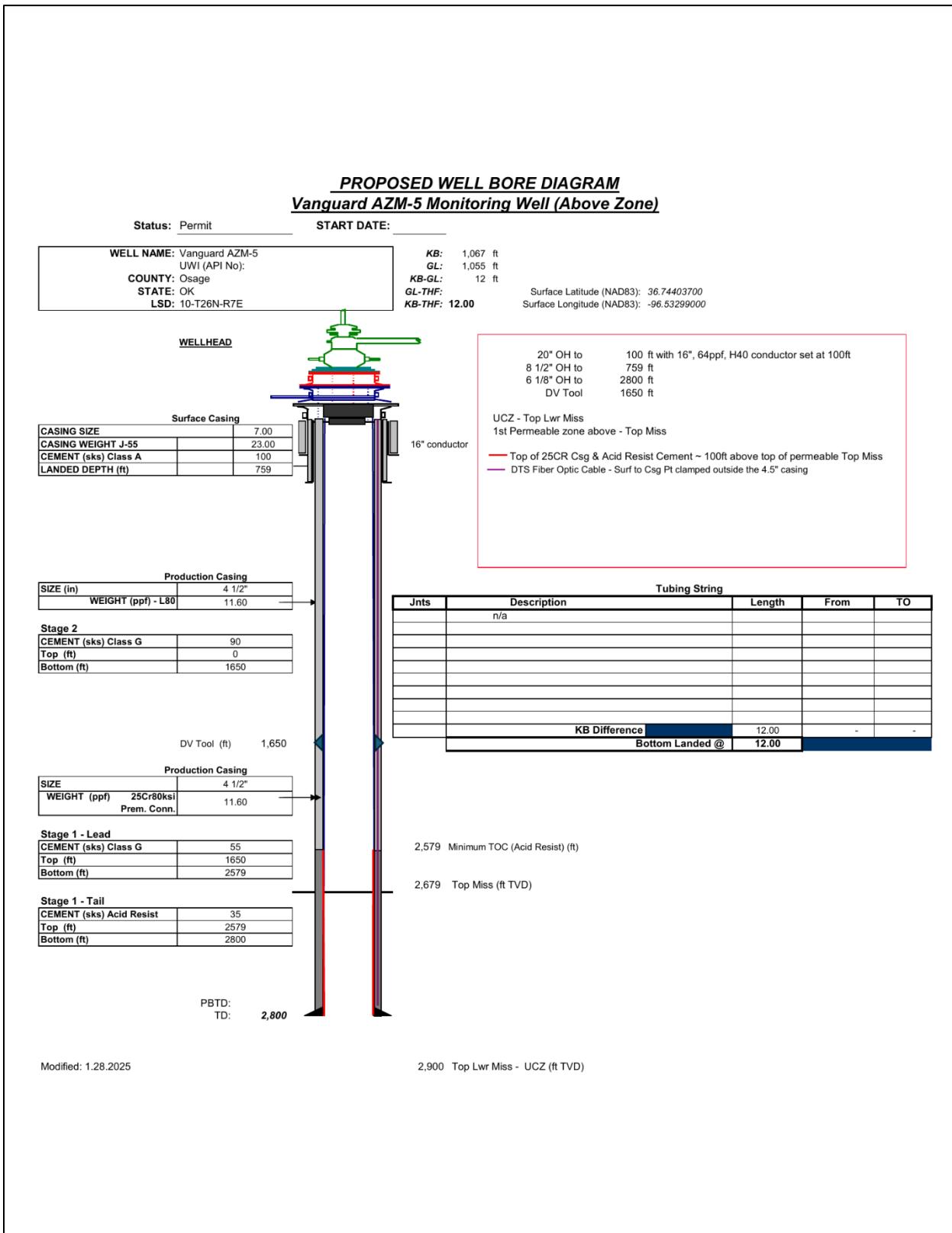


Figure 5.19—Planned well construction diagram for the Vanguard AZM-5 Monitoring Well (Above-Zone).

Plan revision number: 0

Plan revision date: 6/24/2025

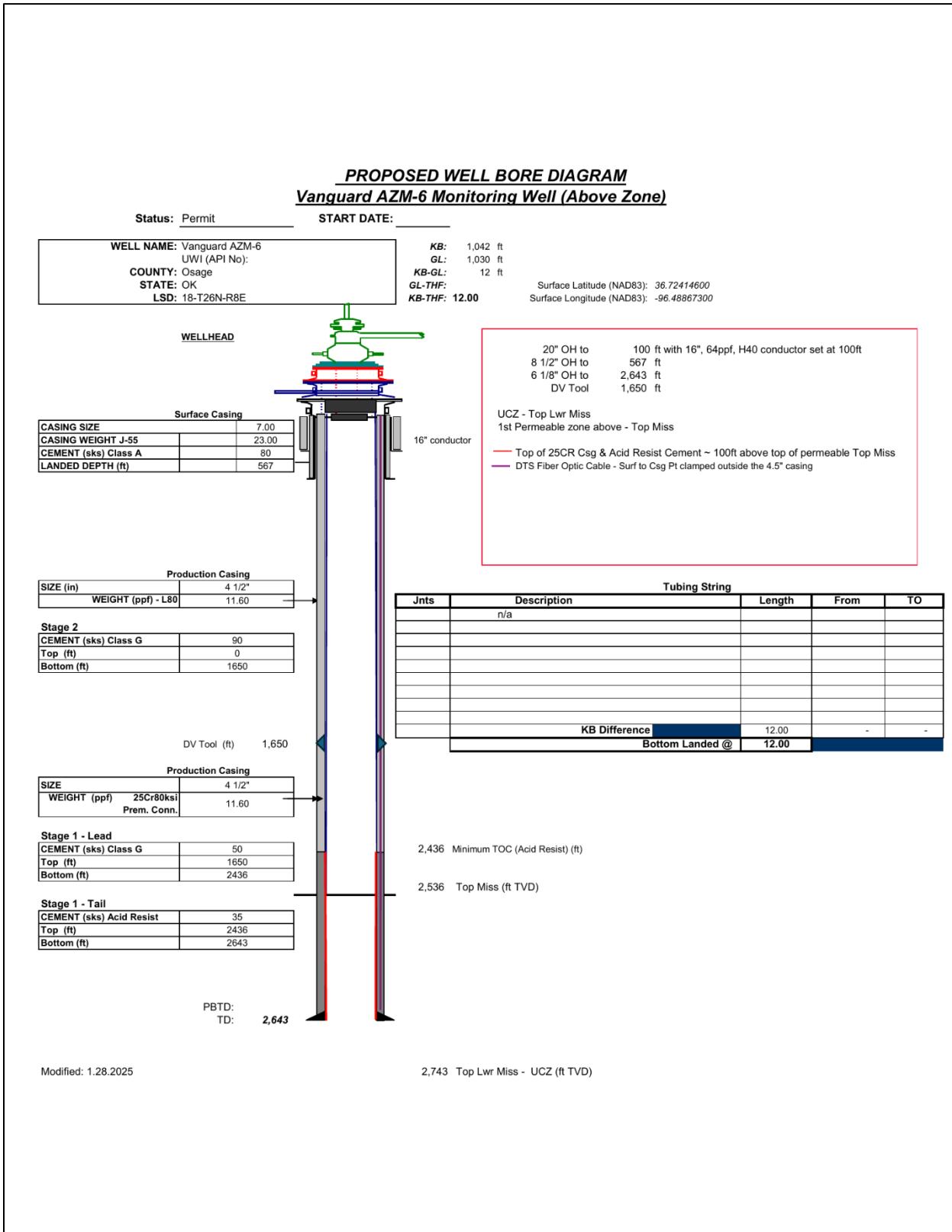


Figure 5.20—Planned well construction diagram for the Vanguard AZM-6 Monitoring Well (Above-Zone).

Plan revision number: 0
 Plan revision date: 6/24/2025

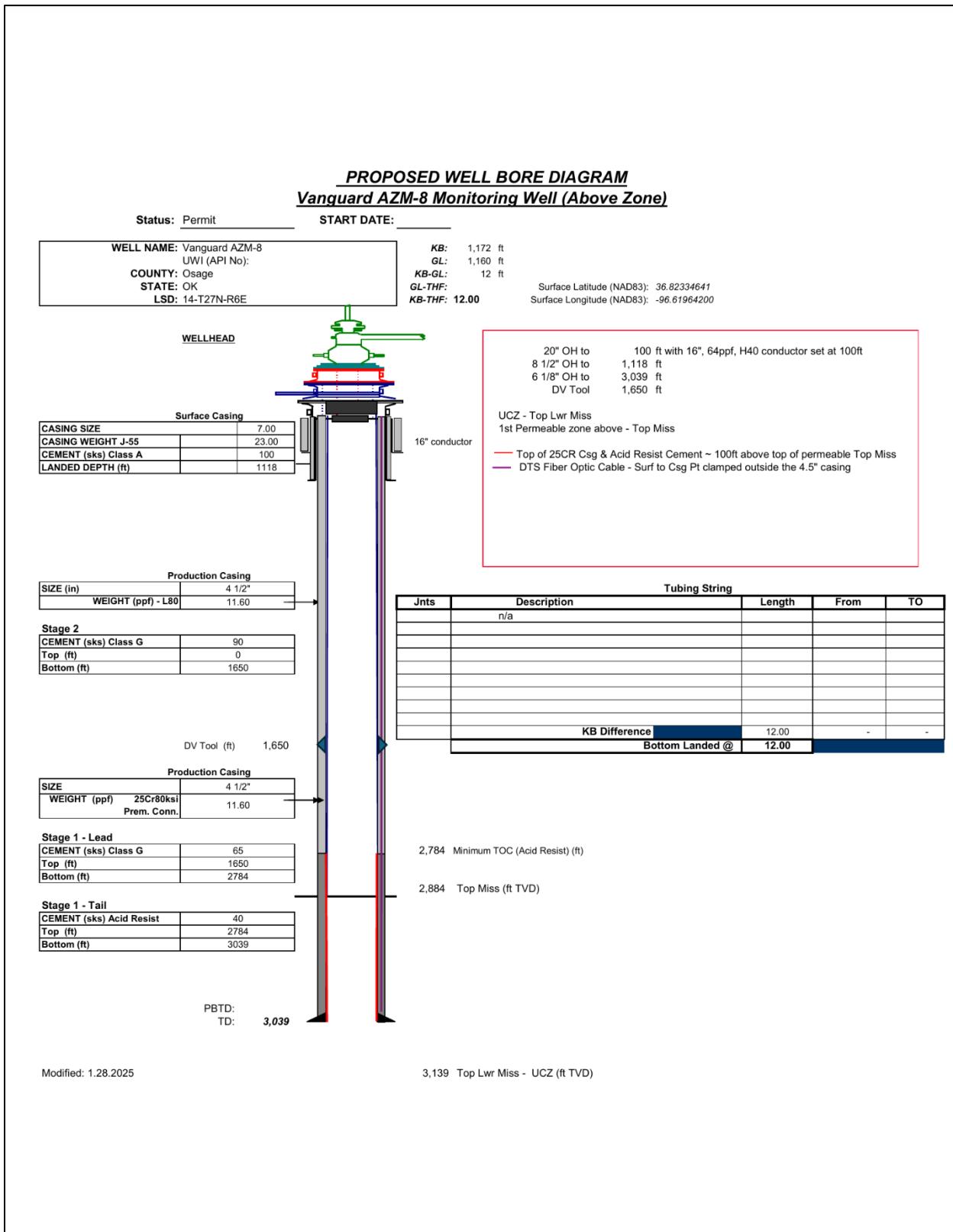


Figure 5.21—Planned well construction diagram for the Vanguard AZM-8 Monitoring Well (Above-Zone).

Plan revision number: 0

Plan revision date: 6/24/2025

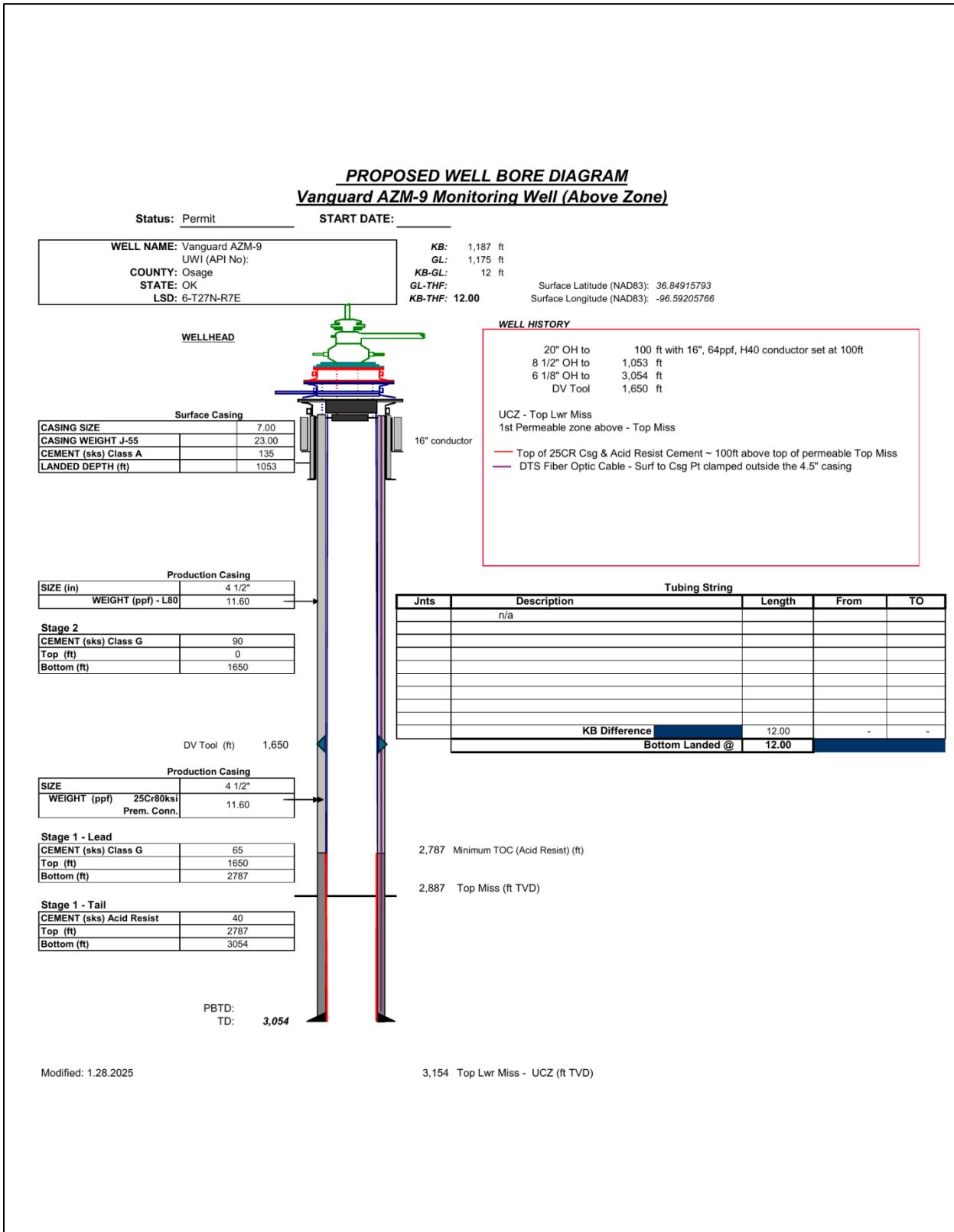


Figure 5.22—Planned well construction diagram for the Vanguard AZM-9 Monitoring Well (Above-Zone).

Plan revision number: 0

Plan revision date: 6/24/2025

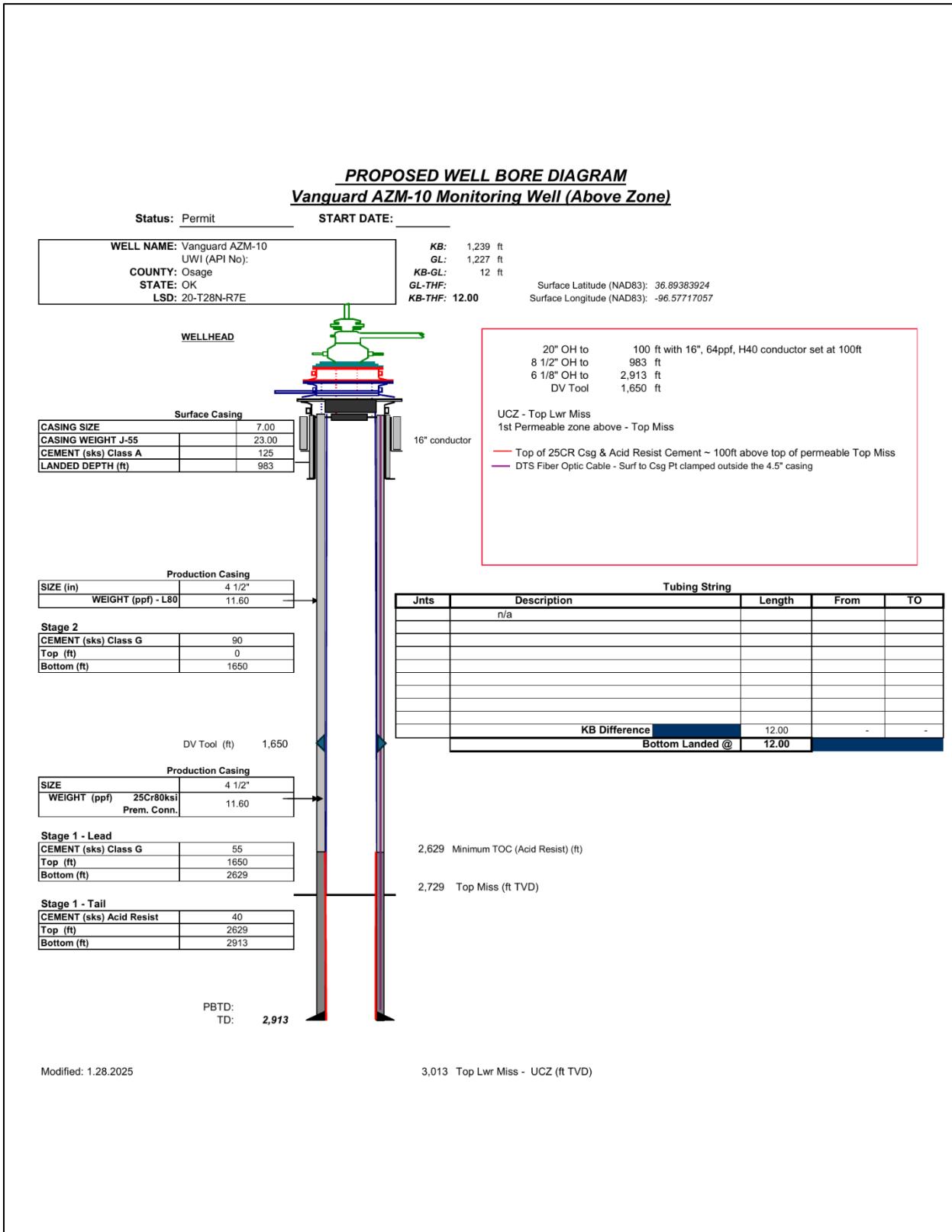


Figure 5.23—Planned well construction diagram for the Vanguard AZM-10 Monitoring Well (Above-Zone).

Plan revision number: 0

Plan revision date: 6/24/2025

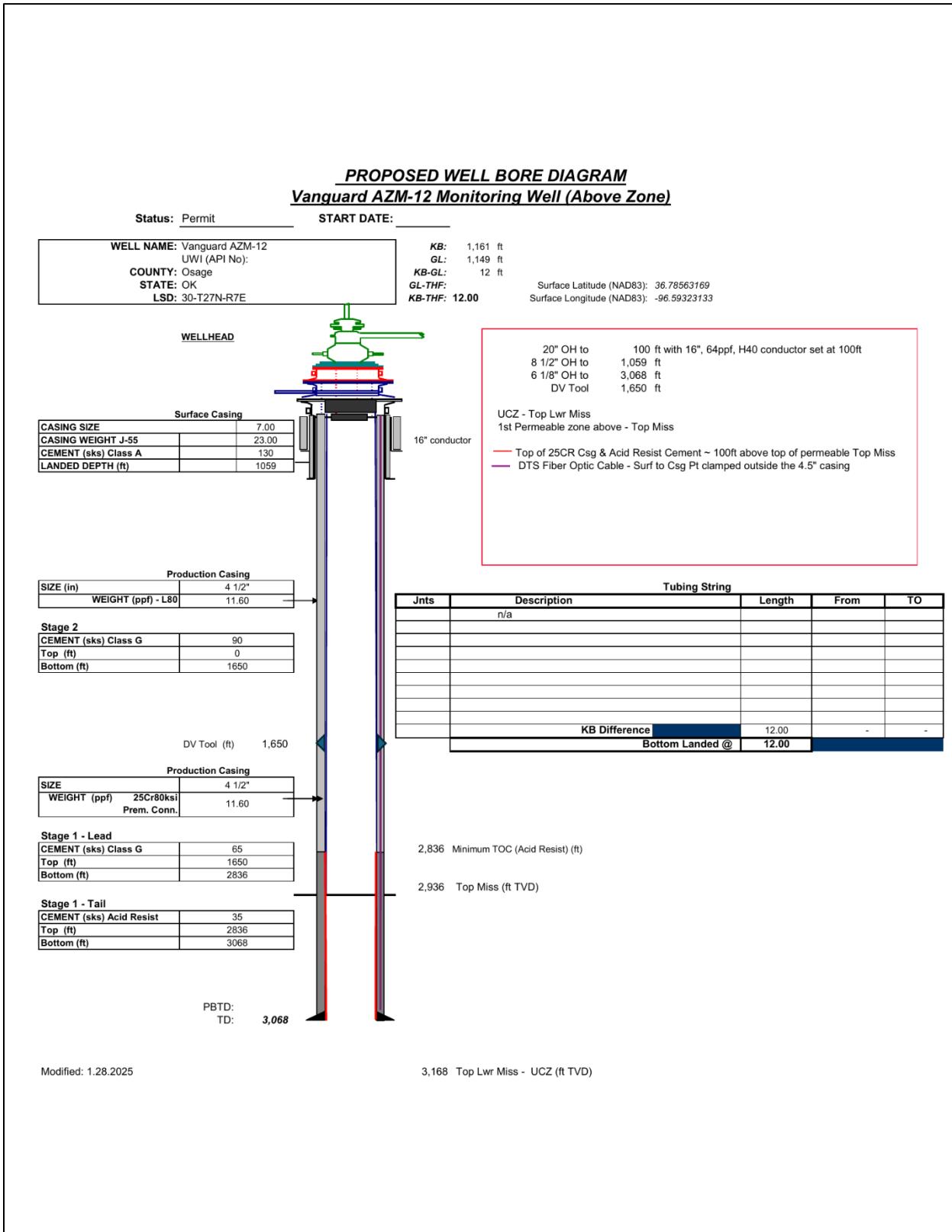


Figure 5.24—Planned well construction diagram for the Vanguard AZM-12 Monitoring Well (Above-Zone).

Plan revision number: 0
Plan revision date: 6/24/2025

Appendix 3—Wellbore Diagrams for In-Zone Monitoring Wells

Plan revision number: 0
Plan revision date: 6/24/2025

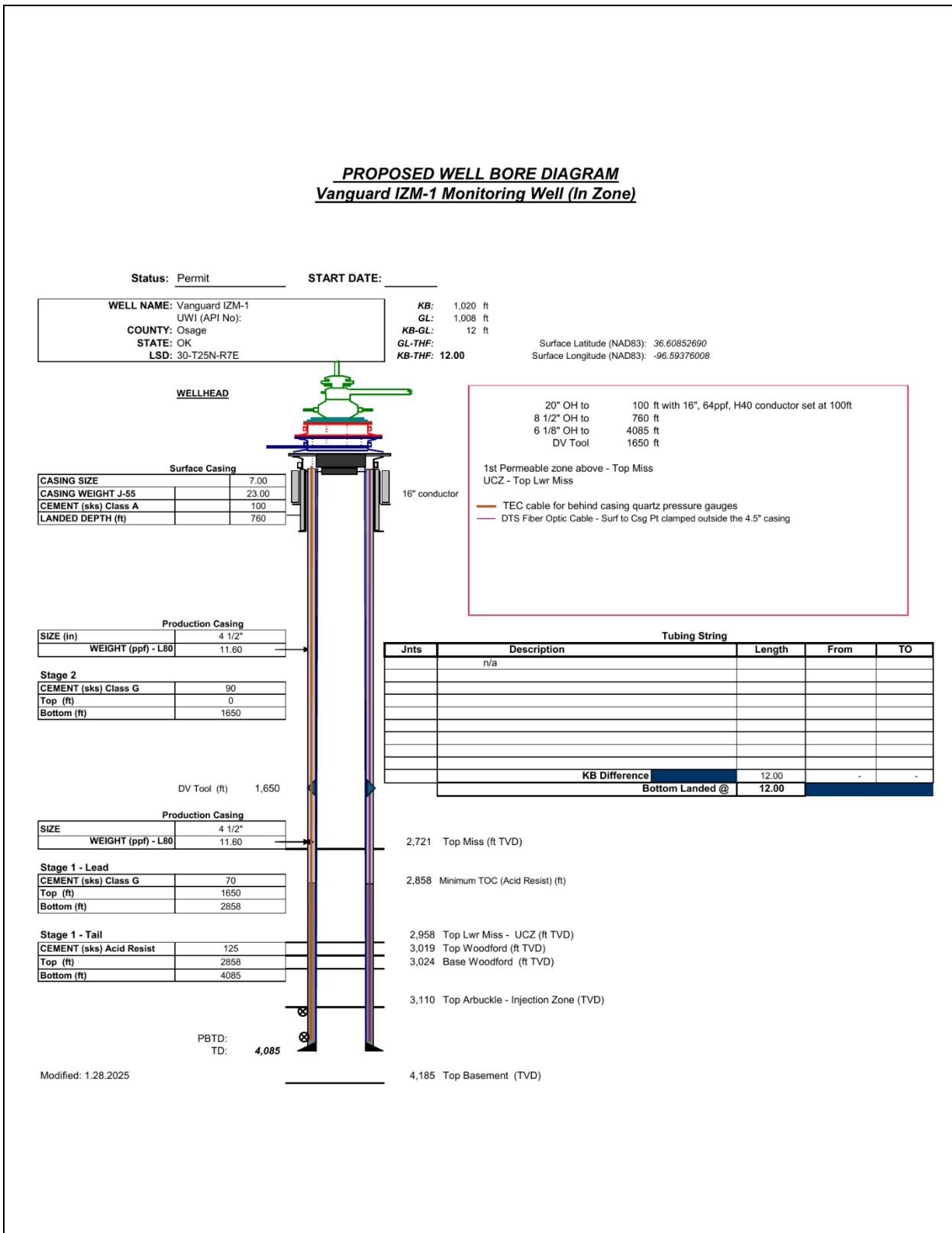


Figure 5.25—Planned well construction diagram for the Vanguard IZM-1 Monitoring Well (In-Zone).

Plan revision number: 0
 Plan revision date: 6/24/2025

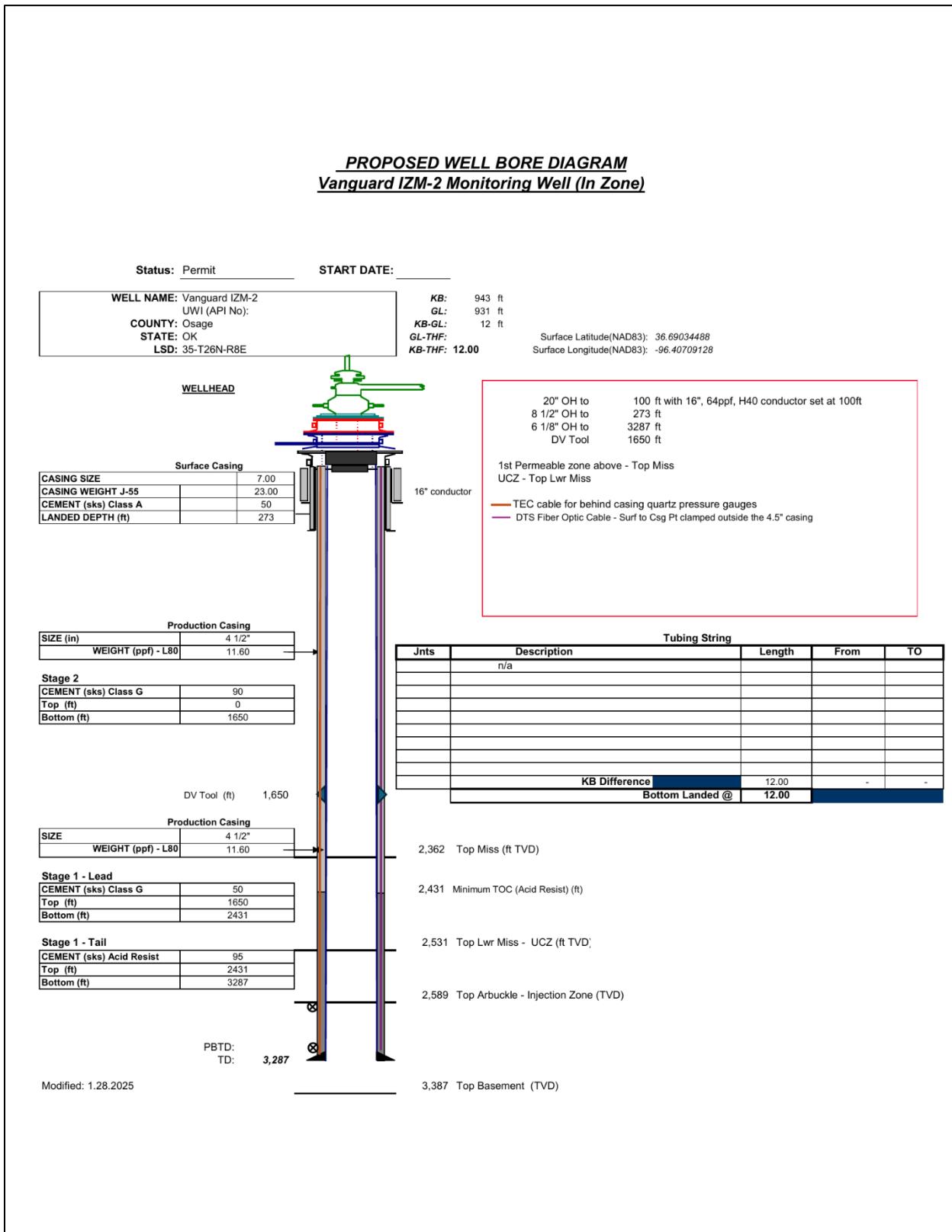


Figure 5.26—Planned well construction diagram for the Vanguard IZM-2 Monitoring Well (In-Zone).

Plan revision number: 0
 Plan revision date: 6/24/2025

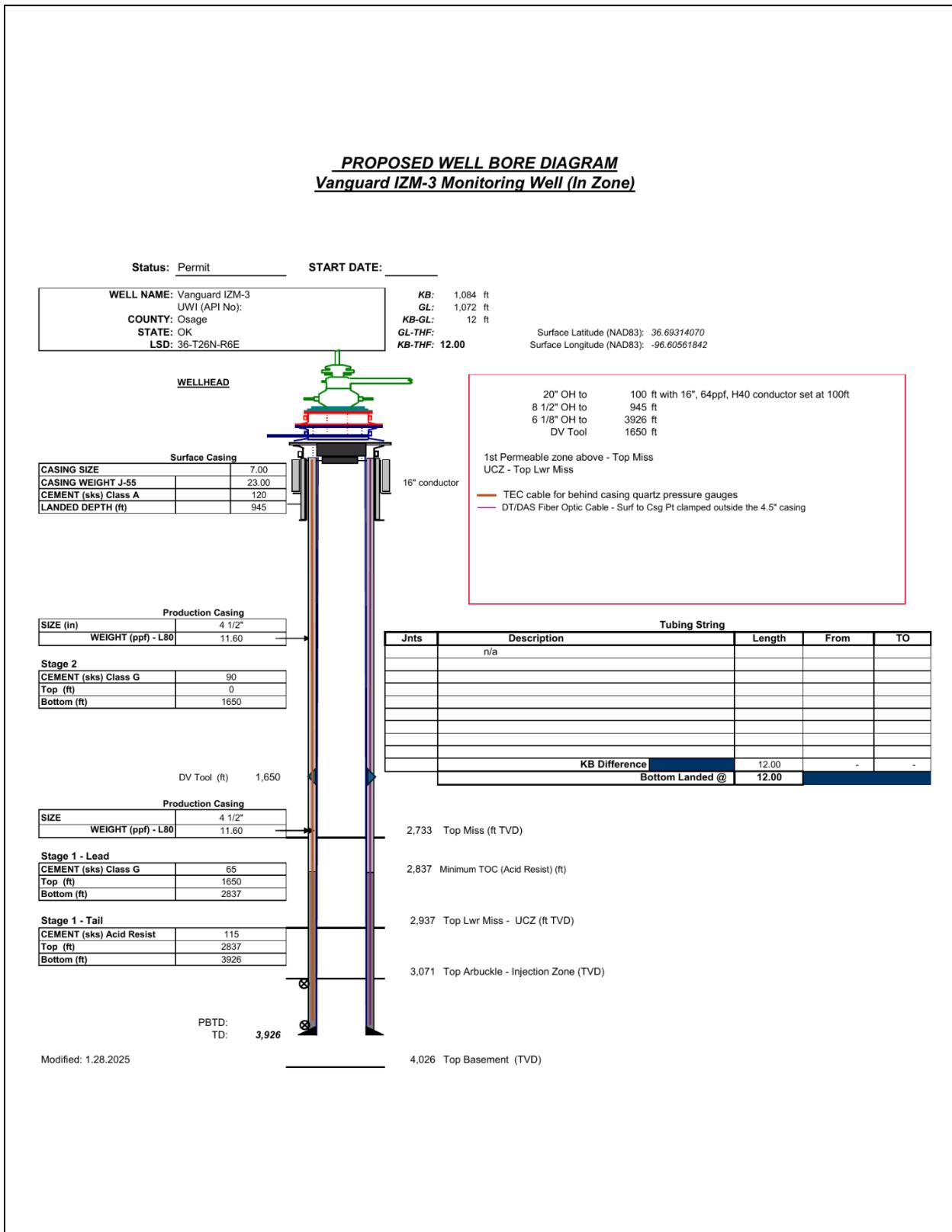


Figure 5.27—Planned well construction diagram for the Vanguard IZM-3 Monitoring Well (In-Zone).

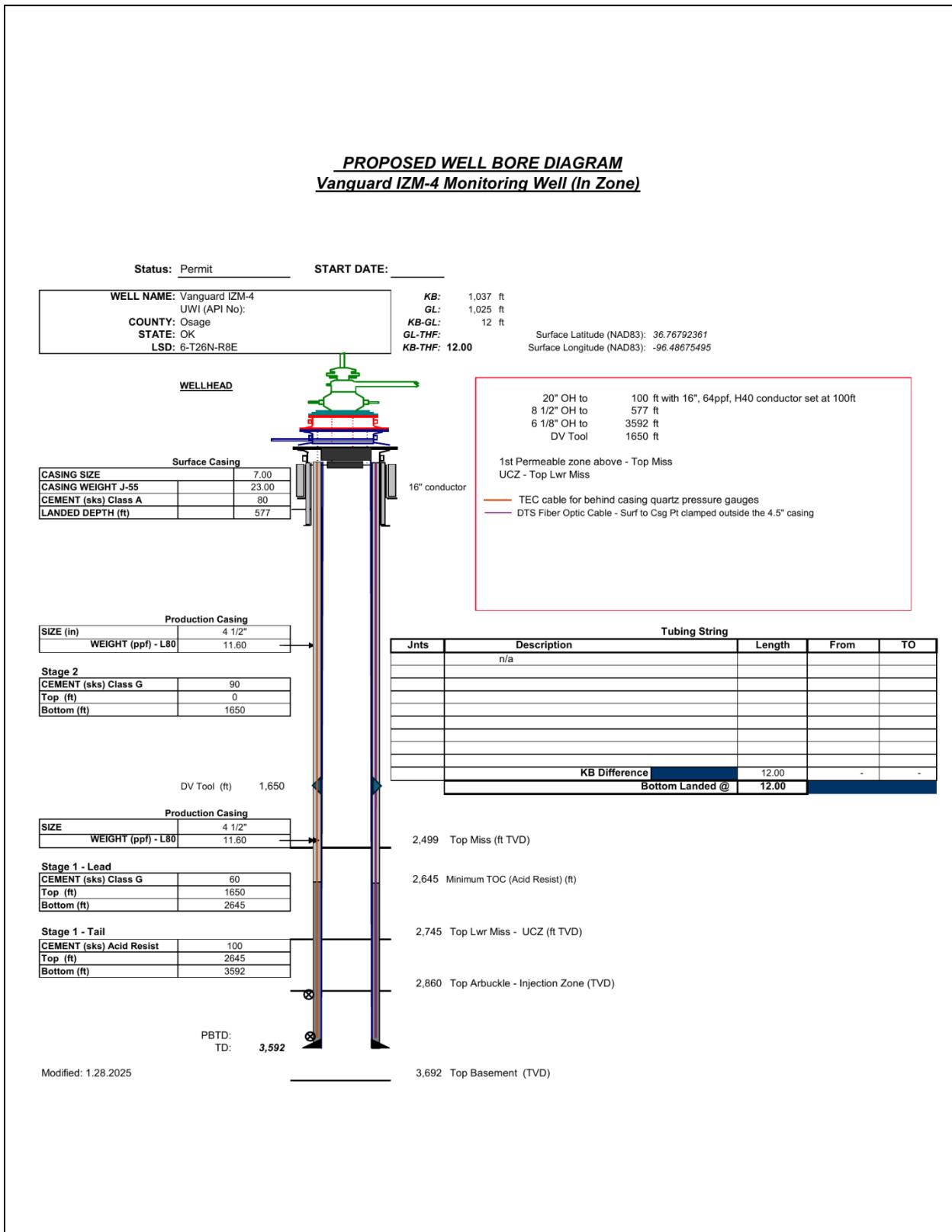


Figure 5.28—Planned well construction diagram for the Vanguard IZM-4 Monitoring Well (In-Zone).

Plan revision number: 0
 Plan revision date: 6/24/2025

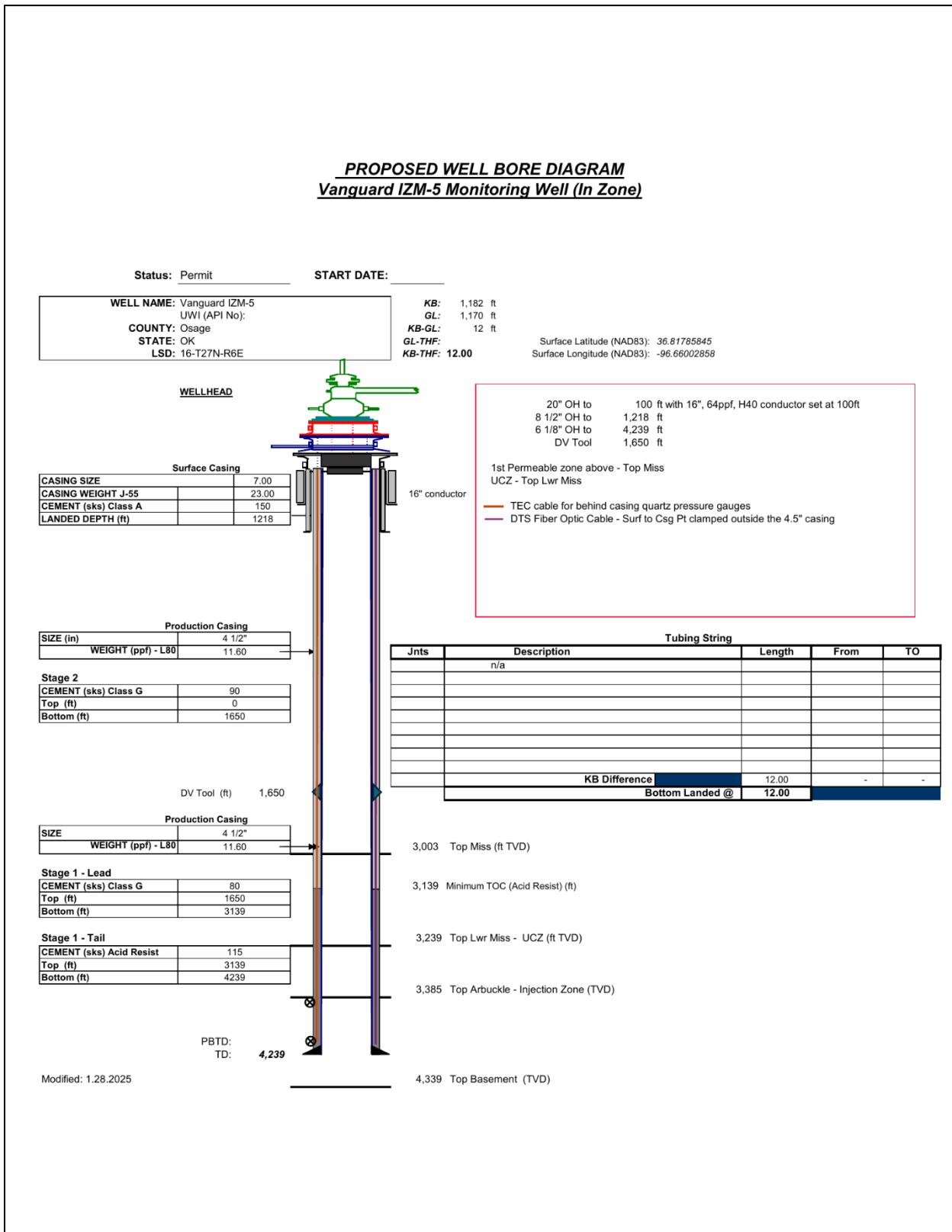


Figure 5.29—Planned well construction diagram for the Vanguard IZM-5 Monitoring Well (In-Zone).

Plan revision number: 0
 Plan revision date: 6/24/2025

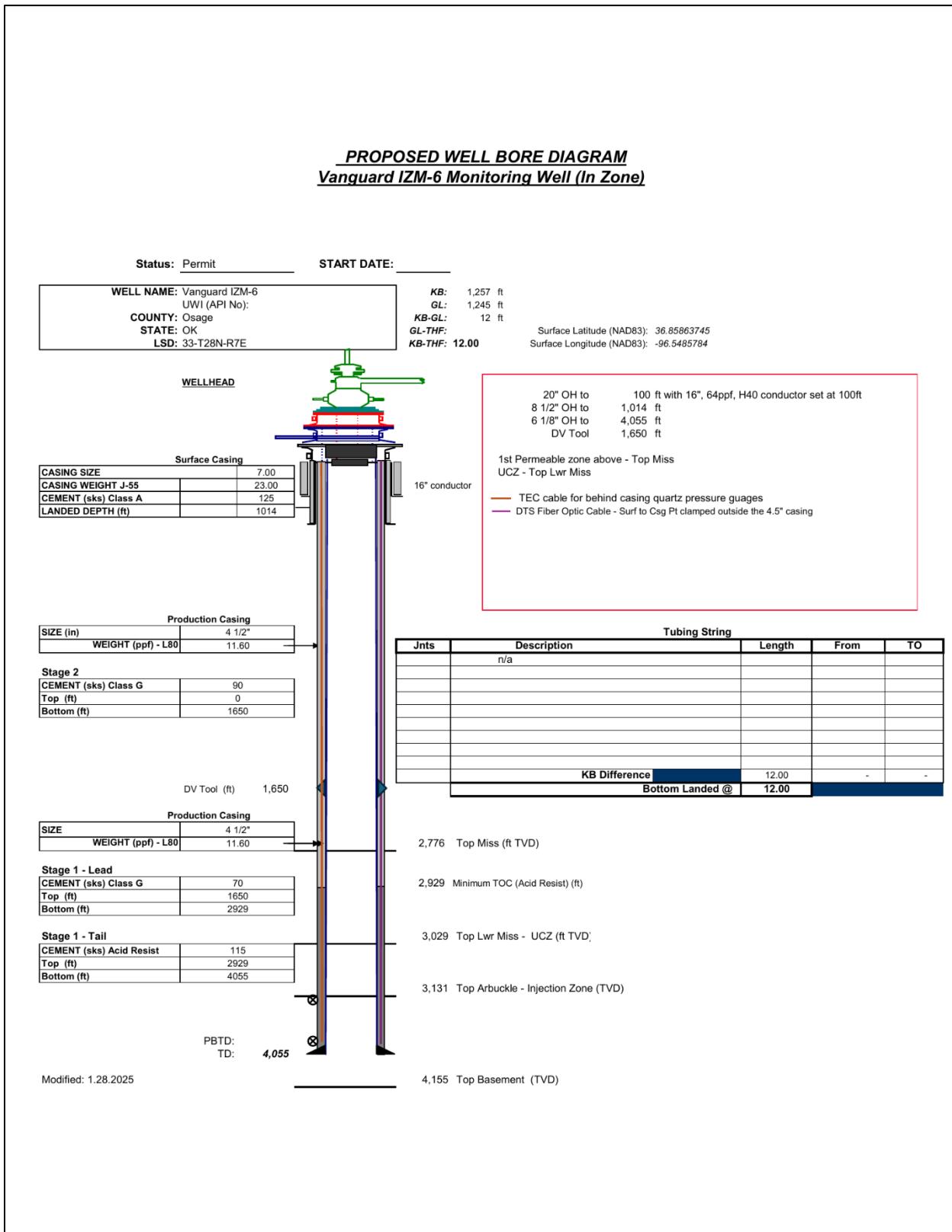


Figure 5.30—Planned well construction diagram for the Vanguard IZM-6 Monitoring Well (In-Zone).

Plan revision number: 0
 Plan revision date: 6/24/2025

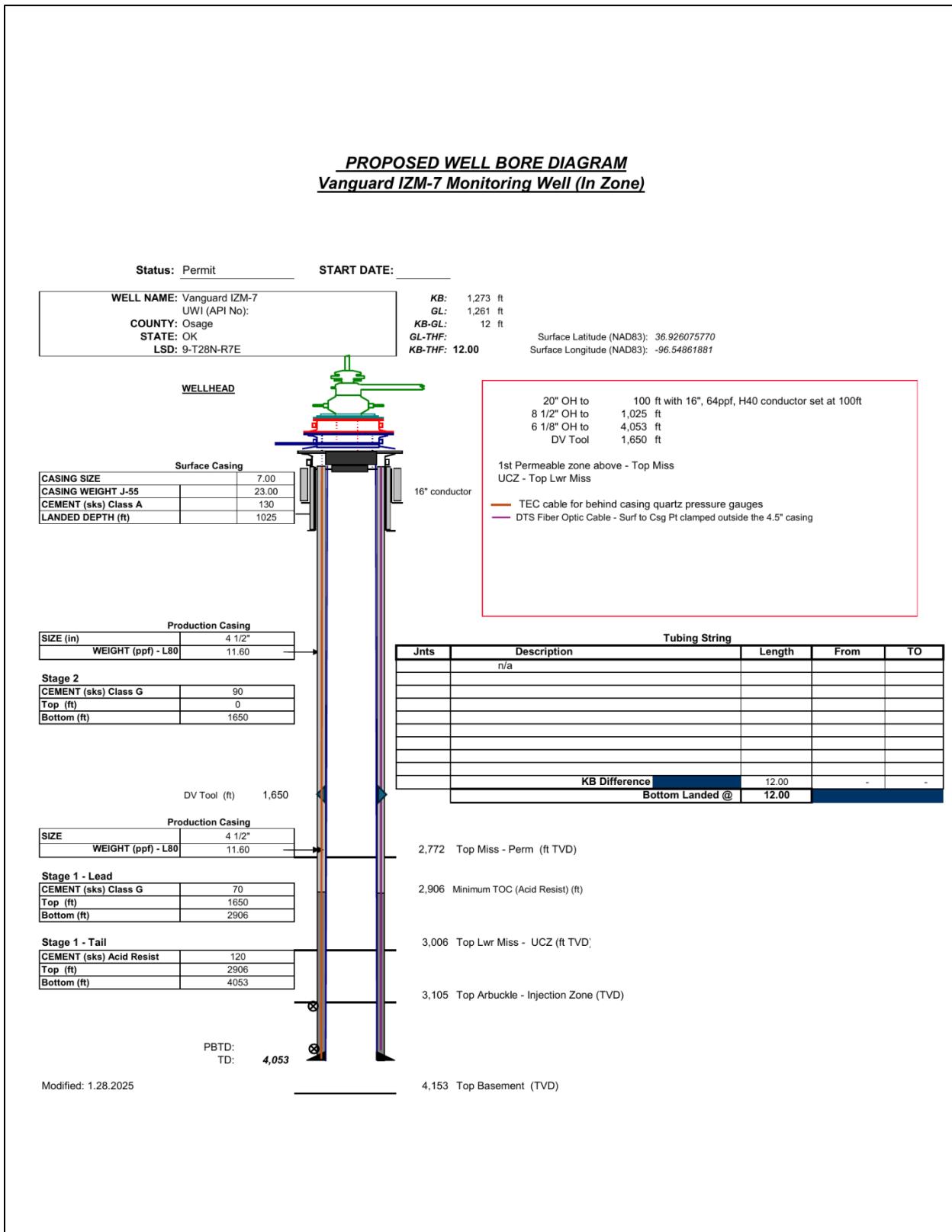


Figure 5.31—Planned well construction diagram for the Vanguard IZM-7 Monitoring Well (In-Zone).