

APPENDIX A:
QUALITY ASSURANCE AND SURVEILLANCE PLAN
40 CFR 146.90(k)

Project Name: Tri-State CCS Buckeye 1

Facility Information

Facility Contact: Tri-State CCS, LLC
14302 FNB Parkway
Omaha, NE 68154
402-691-9500

Well Location: Carroll County, Ohio

Well Name	Latitude (WGS 84)	Longitude (WGS 84)
TB1-1	40.66628014	-81.07152167
TB1-2	40.64546393	-81.01533077
TB1-3	40.61071400	-81.02898600
TB1-4	40.51123391	-81.02586036

Table of Contents

List of Figures	5
List of Tables	5
Acronym List	6
Title and Approval Sheet	8
1. Project Management	9
1.1. Project/Task Organization.....	9
1.1.1. Key Individuals and Responsibilities.....	9
1.1.2. Independence from Project QA Manager and Data Gathering	9
1.1.3. QA Project Plan Responsibility	9
1.2. Problem Definition/Background	9
1.2.1. Reasoning.....	9
1.2.2. Reasons for Initiating the Project.....	10
1.2.3. Regulatory Information, Applicable Criteria, Action Limits.....	10
1.3. Project/Task Description	10
1.3.1. Summary of Work to be Performed.....	10
1.3.2. Geographic and Stratigraphic Locations.....	15
1.3.3. Resource and Time Constraints	19
1.4. Quality Objectives and Criteria.....	19
1.4.1. Performance/Measurement Criteria.....	19
1.4.2. Precision.....	26
1.4.3. Bias	26
1.4.4. Representativeness	26
1.4.5. Completeness	26
1.4.6. Comparability	27
1.4.7. Method Sensitivity	27
1.5. Special Training/Certifications	28
1.5.1. Specialized Training and Certifications.....	28
1.5.2. Training Provider and Responsibility	28
1.6. Documentation and Records	29
1.6.1. Report Format and Package Information	29
1.6.2. Other Project Documents, Records, and Electronic Files.....	29

1.6.3. Data Storage and Duration.....	29
1.6.4. QASP Distribution Responsibility	29
2. Data Generation and Acquisition	29
2.1. Sampling Process Design	29
2.1.1. Design Strategy	29
2.1.2. Type and Number of Samples/Test Runs	32
2.1.3. Site/Sampling Locations	32
2.1.4. Sampling Site Contingency.....	32
2.1.5. Activity Schedule.....	32
2.1.6. Critical/Informational Data.....	32
2.1.7. Sources of Variability	32
2.2. Sampling Methods.....	33
2.2.1. Sampling Standard Operating Procedures	33
2.2.2. In-situ Monitoring.....	33
2.2.3. Continuous Monitoring.....	34
2.2.4. Sample Homogenization, Composition, and Filtration	34
2.2.5. Sample Containers and Volumes	34
2.2.6. Sample Preservation.....	35
2.2.7. Cleaning/Decontamination of Sampling Equipment	35
2.2.8. Support Facilities	35
2.2.9. Corrective Action, Personnel, and Documentation.....	36
2.3. Sample Handling and Custody	36
2.3.1. Maximum Hold Time/Time Before Retrieval	36
2.3.2. Sample Transportation	36
2.3.3. Sampling Documentation.....	36
2.3.4. Sample Identification	36
2.3.5. Sample Chain-of-Custody.....	37
2.4. Analytical Methods	37
2.4.1. Analytical Standard Operating Procedures	37
2.4.2. Equipment/Instrumentation Needed	37
2.4.3. Method Performance Criteria	37
2.4.4. Analytical Failure.....	37
2.4.5. Sample Disposal.....	37
2.4.6. Laboratory Turnaround.....	37

2.4.7. Method Validation for Nonstandard Methods	37
2.5. Quality Control.....	38
2.5.1. QC activities.....	38
2.5.2. Exceeding Control Limits	38
2.5.3. Calculating Applicable QC Statistics.....	38
2.6. Instrument/Equipment Testing, Inspection, and Maintenance.....	39
2.7. Instrument/Equipment Calibration and Frequency	39
2.7.1. Calibration and Frequency of Calibration.....	39
2.7.2. Calibration Methodology	40
2.7.3. Calibration Resolution and Documentation.....	40
2.8. Inspection/Acceptance for Supplies and Consumables.....	40
2.8.1. Supplies, Consumables, and Responsibilities	40
2.9. Non-direct Measurements	40
2.9.1. Data Sources	40
2.9.2. Relevance to Project	41
2.9.3. Acceptance Criteria.....	41
2.9.4. Resources/Facilities Needed	41
2.9.5. Validity Limits and Operating Conditions.....	41
2.10. Data Management.....	41
2.10.1. Data Management Scheme.....	41
2.10.2. Recordkeeping and Tracking Practices	41
2.10.3. Data Handling Equipment/Procedures	41
2.10.4. Responsibility.....	41
2.10.5. Data Archival and Retrieval.....	42
2.10.6. Hardware and Software Configurations.....	42
2.10.7. Checklists and Forms	42
3. Assessment and Oversight.....	42
3.1. Assessments and Response Actions.....	42
3.1.1. Activities to be Conducted.....	42
3.1.2. Responsibility for Conducting Assessments.....	42
3.1.3. Assessment Reporting.....	42
3.1.4. Corrective Action.....	42
3.2. Reports to Management	43
3.2.1. QA Status Reports.....	43

4. Data Validation and Usability	43
4.1. Data Review, Verification, and Validation	43
4.1.1. Criteria for Accepting, Rejecting, or Qualifying Data.....	43
4.2. Verification and Validation Methods.....	43
4.2.1. Data Verification and Validation Processes	43
4.2.2. Data Verification and Validation Responsibility	43
4.2.3. Issue Resolution Process and Responsibility	43
4.2.4. Checklist, Forms, and Calculations	44
4.3. Reconciliation with User Requirements.....	44
4.3.1. Evaluation of Data Uncertainty	44
4.3.2. Data Limitations Reporting.....	44
5. References	45

List of Figures

Figure 1: Map of project showing AoR boundary and the proposed injection and observation well locations. The in-zone observation (TB1-IOB), above-zone observation (TB1-AOB), [...].	16
Figure 2: Map of project showing AoR boundary and the proposed injection and observation well locations. The in-zone observation (TB1-IOB), above-zone observation (TB1-AOB), [...].	17
Figure 3. Generalized stratigraphic column for the project. Primary Complexes: Medina Injection Complex: 2; and Knox Injection Complex: 3. (*Depth is to the top of the Stratigraphic [...]	18

List of Tables

Table 1: Tri-State CCS Buckeye 1 Well Summary (see Figure 1 and Figure 2 for locations)....	10
Table 2: Summary of Testing and Monitoring.	12
Table 3: Instrumentation Summary.	13
Table 4: Summary of Analytical and Field Parameters for Shallow USDW, Deep USDW, and Above-Zone Fluid Sampling.....	20
Table 5: Summary of Analytical Parameters for CO ₂ Stream.	21
Table 6: Specifications for MIT and Geophysical Monitoring Technology.....	23
Table 7: Summary of Analytical Parameters for Corrosion Coupons.	23
Table 8: Summary of Measurement Parameters for CO ₂ Injection Process Monitoring.....	24
Table 9: Actionable Testing and Monitoring Outputs.....	25
Table 10: Pressure - Downhole Gauge Vendor Specifications. ¹	27
Table 11: Representative Logging Tool Specifications. ¹	27
Table 12: Wellhead Pressure/Temperature Gauge Vendor Specifications. ¹	28
Table 13: Mass Flow Rate Field Gauge—CO ₂ Mass Flow Rate Vendor Specifications. ¹	28

Table 14: Stabilization Criteria of Water Quality Parameters During Shallow Well Purging.	33
Table 15: Summary of Sample Containers, Preservation Treatments, and Holding Times for CO ₂ Gas Stream Analysis.	34
Table 16: Summary of Anticipated Sample Containers, Preservation Treatments, and Holding Times for Groundwater Samples.	35
Table 17: Example of criteria used to evaluate data quality.	44

Acronym List

°C	Degrees Celsius
°F	Degrees Fahrenheit
µm	Micrometer
µS	Microsiemens
Al	Aluminum
AOB-#	Above-Zone Observation wells
AoR	Area of Review
APHA	American Public Health Association
As	Arsenic
ASTM	American Society for Testing and Materials
Ba	Barium
Br	Bromine
Ca	Calcium
CCS	Carbon Capture and Storage
Cd	Cadmium
Cl	Chlorine
cm	Centimeter
CO ₂	Carbon Dioxide
Cr	Chromium
Cu	Copper
DH	Down Hole
DTS	Distributed Temperature Sensing
Fe	Iron
ft	Feet
FS	Formation Strength
GC-P	Gas Chromatography-Pyrolysis
GW-#	Shallow Groundwater Wells
HDPE	High Density Polyethylene
hr	Hour
ICP	Inductively Coupled Plasma
ID	Identification
IOB-#	In-Zone Observation wells
ISBT	International Society of Beverage Technologists

K	Potassium
L	Liter
Mg	Magnesium
mg	Milligram
MIT	Mechanical Integrity Testing
ml	Milliliter
mm	Millimeter
MMscf/d	Million Standard Cubic Feet/Day
Mn	Manganese
MRayl	Mega Rayl
MS	Mass Spectrometry
Mt/d	Thousand Tonnes per Day
Na	Sodium
NO ₃	Nitrate
OES	Optical Emission Spectrometry
Pb	Lead
pH	Potential of Hydrogen
PNC	Pulsed Neutron Capture
ppm	Parts Per Million
psi	Pounds Per Square Inch
pu	Porosity Units
QA	Quality Assurance
QA/QC	Quality Assurance and Quality Control
QASP	Quality Assurance and Surveillance Plan
S&A	Sampling and Analysis
Sb	Antimony
Se	Selenium
Si	Silicon
SO ₄	Sulfate
T	Temperature
TBD	To be Determined
TD	Total Depth
TDS	Total Dissolved Solids
Ti	Titanium
TB1-#	Tri-State CCS Buckeye 1 Injection Wells
UIC	Underground Injection Control
uL	Microliter
UOB-#	Deep Observation Wells
U.S. EPA	U.S. Environmental Protection Agency
USDW	Underground Source of Drinking Water

Title and Approval Sheet

This Quality Assurance and Surveillance Plan (QASP) is approved for use and implementation at Tri-State CCS Buckeye 1. The signatures below denote the approval of this document and intent to abide by the procedures outlined within it.

Signature

TBD

Project Manager (during construction and pre-operational period)

Date

Signature

TBD

Operations Manager (during injection and post-injection periods)

Date

1. Project Management

1.1. Project/Task Organization

1.1.1. Key Individuals and Responsibilities

Tri-State CCS Buckeye 1 (the “project”) is owned and operated by Tri-State CCS, LLC, who will serve as the lead on all project tasks while supervising the performance of subcontractors when required for individual tasks. The Project Manager will be responsible for implementation of this plan during pre-operational testing, and the Operations Manager will be responsible for implementation of this plan during injection and post-injection. The program will be broken into seven subcategories:

1. Shallow Groundwater Sampling
2. Deep Groundwater Sampling
3. Well Logging
4. Mechanical Integrity Testing (MIT)
5. Pressure/Temperature Monitoring
6. CO₂ Stream Analysis
7. Geophysical Monitoring

1.1.2. Independence from Project QA Manager and Data Gathering

Most physical samples collected, and the data gathered as part of the testing and monitoring program are analyzed, processed, or witnessed by third parties independent of the project management structure. Tri-State CCS, LLC will provide the Underground Injection Control (UIC) Program Director with the name and credentials of any vendors, subcontractors, or testing laboratories used for testing and monitoring protocols during the reporting period in the Semi-Annual Testing and Monitoring Report.

1.1.3. QA Project Plan Responsibility

Tri-State CCS, LLC will be responsible for maintaining and distributing the official, approved QASP. Tri-State CCS, LLC will periodically review this QASP and consult with the UIC Program Director if/when changes to the plan are required.

1.2. Problem Definition/Background

1.2.1. Reasoning

This QASP was developed to ensure the quality and standards of the Testing and Monitoring Plan, in accordance with 40 CFR 146.90(k), for the project’s Class VI UIC well permit.

The objectives of the Testing and Monitoring Plan include:

- Protecting Underground Sources of Drinking Water (USDW);
- Meeting the regulatory requirements of 40 CFR 146.90;
- Ensuring that the injection wells are operating as designed;
- Providing data to validate and calibrate the geological and dynamic models used to predict the distribution of Carbon Dioxide (CO₂) within the injection zone; and
- Supporting Area of Review (AoR) re-evaluations during the course of the project.

1.2.2. Reasons for Initiating the Project

The objective of the project is to develop a safe and commercially viable CO₂ storage site available to CO₂ emitters in the region while ensuring protection of groundwater resources and environmental and public health.

1.2.3. Regulatory Information, Applicable Criteria, Action Limits

Regulations at 40 CFR 146 require owners or operators of Class VI UIC wells to perform several types of activities during the lifetime of the project in order to ensure that the injection well maintains its mechanical integrity, that fluid migration and the extent of pressure elevation are within the limits described in the permit application, and that USDWs are not endangered. These monitoring activities include MITs, injection well testing during operation, monitoring of groundwater quality in several zones, and tracking of the CO₂ plume and associated pressure front (full details of monitoring activities are provided in the Testing and Monitoring Plan). This QASP details both the measurements that will be taken and the steps to ensure quality of all the data so it can be used with confidence in making decisions during the life of the project.

1.3. Project/Task Description

1.3.1. Summary of Work to be Performed

Table 1 outlines the plan for the injection and observation wells, Table 2 describes the testing and monitoring activities, location, and purpose, and Table 3 summarizes the instrumentation.

Table 1: Tri-State CCS Buckeye 1 Well Summary (see Figure 1 and Figure 2 for locations).

Well Types	Well Acronym	CCS System Zone	Zone Formation	Zone Depth (ft MD)
Shallow Groundwater	TB1-GW-1, TB1-GW-2, TB1-GW-3, TB1-GW-4	Shallow USDW	Pennsylvanian	TBD
Deep Observation	TB1-UOB-1, TB1-UOB-2, TB1-UOB-3, TB1-UOB-4	Lowermost USDW	Sharon Sandstone	~ 753, ~ 715, ~ 902, ~ 1,051
Above-Zone Observation	TB1-AOB-1, TB1-AOB-2, TB1-AOB-3	1 st Permeable Zone above the Medina Group	TBD ¹	~ TBD, ~ TBD, ~ TBD

Well Types	Well Acronym	CCS System Zone	Zone Formation	Zone Depth (ft MD)
		1 st Permeable Zone above the Knox Group	TBD ¹	
In-Zone Observation	TB1-IOB-1, TB1-IOB-2, TB1-IOB-3, TB1-IOB-4	Reservoir	Medina Group	~ 5,524, ~ 5,643, ~ 5,787, ~ 5,901
			Knox Group	~ 8,426, ~ 8,634, ~ 8,832, ~ 9,075
Injection	TB1-1 TB1-2 TB1-3 TB1-4	Reservoir	Medina Group	~ 5,557, ~ 5,615, ~ 5,892, ~ 6,069
			Knox Group	~ 8,505, ~ 8,693, ~ 8,963, ~ 9,258

¹ The first permeable unit for the two injection complexes will be defined as the first unit above the confining zones of the injection complex with porosity $\geq 3\%$ and permeability ≥ 1 md. These cutoffs are subject to change based on subsurface data collected for the CarbonSAFE stratigraphic wells and the pre-operational testing for each injection well.

The remainder of this page intentionally left blank.

Table 2: Summary of Testing and Monitoring.

Activity	Location(s)	Method	Analytical Technique	Purpose
CO ₂ Stream Analysis ¹	Downstream of all CO ₂ source points prior to the storage complex pipeline manifold	Gas Chromatograph and Injectate Sampling	Chemical analysis	Analysis of injectate 40 CFR 146.90(a)
Corrosion Monitoring	Upstream of wellhead, prior to the Coriolis mass flow meters, and downstream of the injection well control valve	Corrosion Coupons Analysis	Chemical analysis	Corrosion monitoring 40 CFR 146.90(c)
Groundwater Quality and Geochemistry ¹	1. TB1-AOB-1, TB1-AOB-2, TB1-AOB-3; TB1-UOB-1, TB1-UOB-2, TB1-UOB-3, TB1-UOB-4 2. TB1-1, TB1-2, TB1-3, TB1-4; TB1-IOB-1, TB1-IOB-2, TB1-IOB-3, TB1-IOB-4; TB1-AOB-1, TB1-AOB-2, TB1-AOB-3; TB1-UOB-1, TB1-UOB-2, TB1-UOB-3, TB1-UOB-4	1. Fluid S&A 2. Downhole Pressure Gauges	Chemical analysis and continuous direct measurement	Groundwater quality and geochemistry monitoring 40 CFR 146.90(d)
Injection Rate and Volume	TB1-1, TB1-2, TB1-3, TB1-4	Mass Flow Meter	Continuous measurement	Continuous monitoring of injection rate and volume 40 CFR 146.90(b)
Injection Pressure	TB1-1, TB1-2, TB1-3, TB1-4	Tubing pressure gauge	Continuous measurement	Continuous monitoring of injection pressure 40 CFR 146.90(b)
Annular Pressure	TB1-1, TB1-2, TB1-3, TB1-4	Annular pressure gauge	Continuous measurement	Continuous monitoring of annular pressure 40 CFR 146.90(b)
Annular Volume	TB1-1, TB1-2, TB1-3, TB1-4	Annular volume gauge and record	Continuous direct measurement	Continuous monitoring of annulus fluid volume 40 CFR 146.90(b)
Injection Zone 1. Pressure 2. Temperature	TB1-1, TB1-2, TB1-3, TB1-4 TB1-IOB-1, TB1-IOB-2, TB1-IOB-3, TB1-IOB-4	1. Downhole Pressure Gauges 2. DTS (Distributed Temperature Sensing)	Direct measurement	Continuous monitoring of injection zone pressure and temperature 40 CFR 146.90(g)(1)

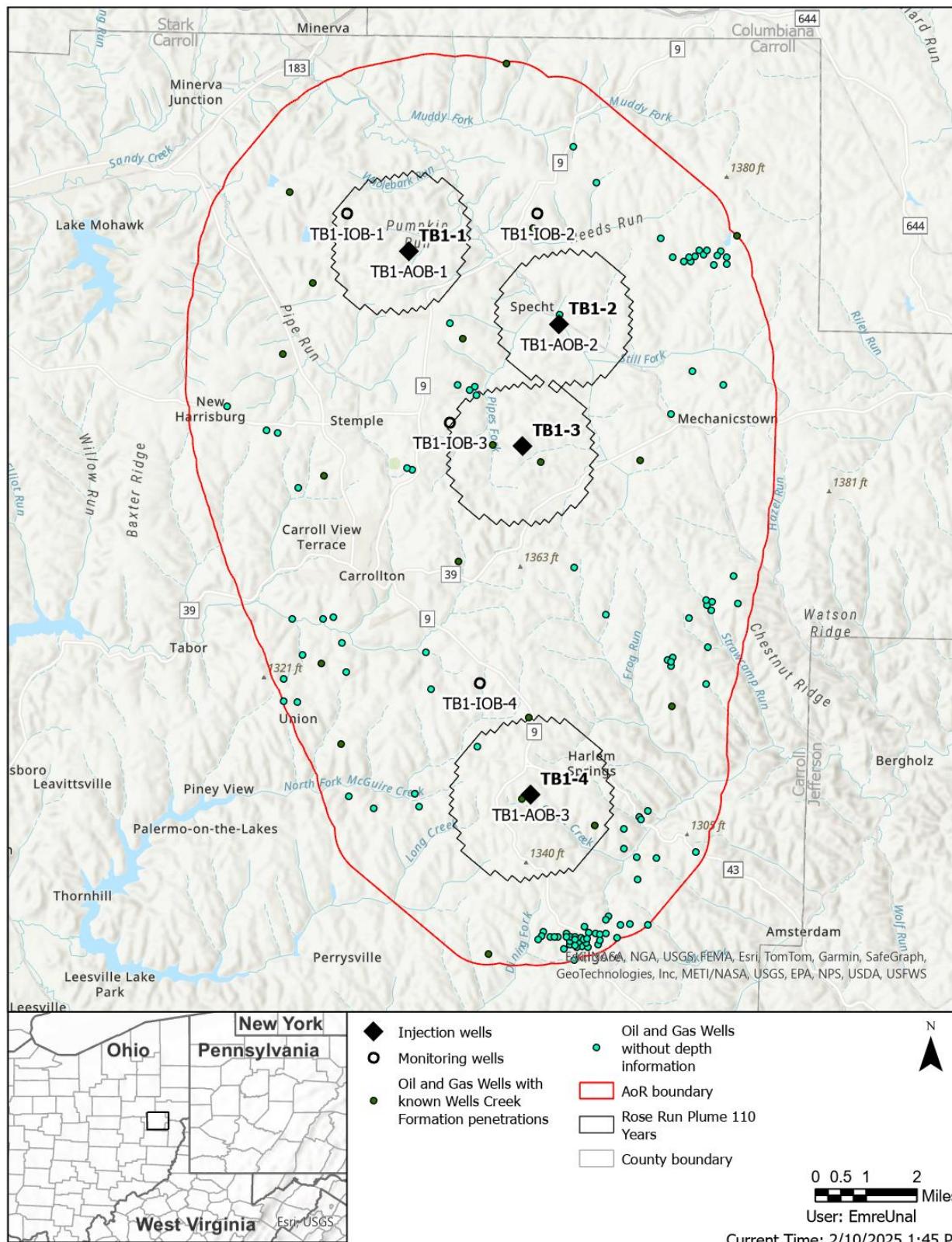
Activity	Location(s)	Method	Analytical Technique	Purpose
Mechanical Integrity	TB1-1, TB1-2, TB1-3, TB1-4	Internal – Annular pressure gauge monitoring injection wells	Direct measurement	Demonstration of internal and external mechanical integrity of the wellbore 40 CFR 146.90(e)
	<i>Surface to TD:</i> TB1-1, TB1-2, TB1-3, TB1-4; TB1-IOB-1, TB1-IOB-2, TB1-IOB-3, TB1-IOB-4	External – DTS	Distributed indirect measurement	
Pressure Falloff Testing	TB1-1, TB1-2, TB1-3, TB1-4	Pressure gauge	Direct measurement	Pressure falloff testing 40 CFR 146.90(f)
CO ₂ Plume and Pressure Front Monitoring	TB1-1, TB1-2, TB1-3, TB1-4; TB1-IOB-1, TB1-IOB-2, TB1-IOB-3, TB1-IOB-4	DTS	Direct and indirect measurements	CO ₂ plume imaging and pressure front tracking 40 CFR 146.90(g)
	TB1-AOB-1, TB1-AOB-2, TB1-AOB-3; TB1-UOB-1, TB1-UOB-2, TB1-UOB-3, TB1-UOB-4	Downhole pressure gauge		
	TB1-1, TB1-2, TB1-3, TB1-4; TB1-IOB-1, TB1-IOB-2, TB1-IOB-3, TB1-IOB-4; TB1-AOB-1, TB1-AOB-2, TB1-AOB-3; TB1-UOB-1, TB1-UOB-2, TB1-UOB-3, TB1-UOB-4	Pulsed Neutron Capture (PNC) ²		

¹ Sampling and analysis frequencies may be reduced based on project-specific benchmarks that will be defined from baseline monitoring data and/or injection phase monitoring data.

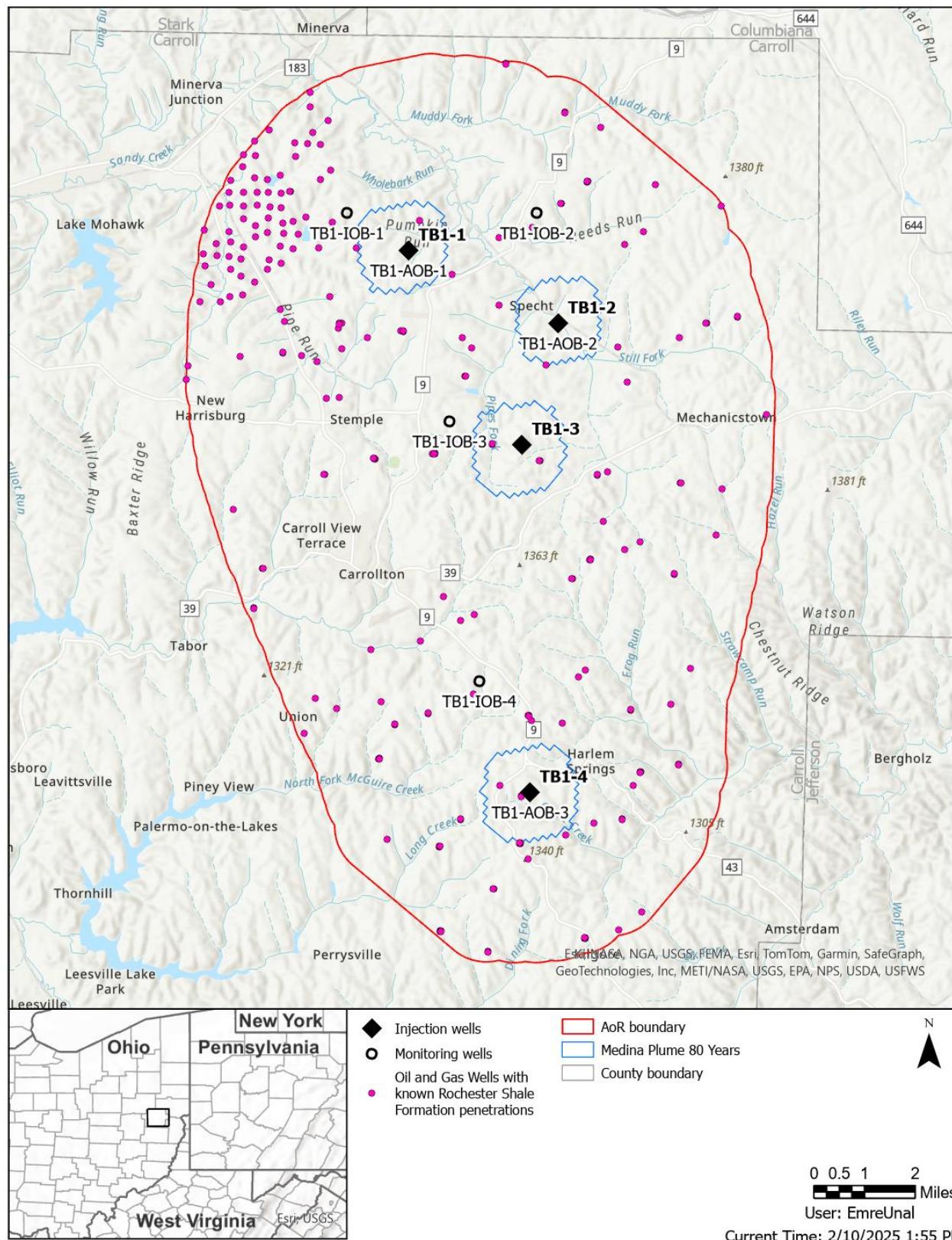
² Apart from injection wells, PNC logging or equivalent will only occur in wells with CO₂ breakthrough or wells with detected containment loss.

Table 3: Instrumentation Summary.

Instrument Type	Monitoring and Data Collection Location(s)	Monitoring Target (Formation or Other)	Explanation
Gas Chromatograph; Injectate Sampling and Analysis	Downstream of all CO ₂ source points prior to the storage complex pipeline manifold	N/A	Used to analyze the chemical characteristic of the injectate stream to ensure compliance with the operators expected injectate stream composition
Mass Flow Meter	Each Injection Well Pad (TB1-1, TB1-2, TB1-3, TB1-4)	Knox Group and Medina Group	Used to record total mass of CO ₂ injected.


Instrument Type	Monitoring and Data Collection Location(s)	Monitoring Target (Formation or Other)	Explanation
Pressure Gauges	TB1-1, TB1-2, TB1-3, TB1-4; TB1-IOB-1, TB1-IOB-2, TB1-IOB-3, TB1-IOB-4; TB1-AOB-1, TB1-AOB-2, TB1-AOB-3; TB1-UOB-1, TB1-UOB-2, TB1-UOB-3, TB1-UOB-4	Knox Group and Medina Group, First Permeable Units above the Confining Zones, and Sharon Sandstone	Used to monitor groundwater quality, annulus pressure, injection zone direct pressure front evolution, and for containment loss detection.
DTS	TB1-1, TB1-2, TB1-3, TB1-4; TB1-IOB-1, TB1-IOB-2, TB1-IOB-3, TB1-IOB-4	Knox Group and Medina Group	Injection well external mechanical integrity (TB1-1, TB1-2, TB1-3, TB1-4), identify the vertical intervals taking injectate within the reservoir for use in computational model updates, and containment loss detection.
DAS	TBD	Knox Group and Medina Group	DAS will be used for additional monitoring including potential repeat VSP/ CSP surveys or continuous microseismic monitoring based on additional site characterization.
PNC Logging ¹	TB1-1, TB1-2, TB1-3, TB1-4; TB1-IOB-1, TB1-IOB-2, TB1-IOB-3, TB1-IOB-4; TB1-AOB-1, TB1-AOB-2, TB1-AOB-3; TB1-UOB-1, TB1-UOB-2, TB1-UOB-3, TB1-UOB-4	Knox Group and Medina Group, First Permeable Units above the Confining Zones, and Sharon Sandstone	Pre-injection baseline, CO ₂ containment loss detection/verification, & vertical CO ₂ saturation profiling for use in computational model updates
Groundwater Sampling and Analysis	TB1-AOB-1, TB1-AOB-2, TB1-AOB-3 TB1-UOB-1, TB1-UOB-2, TB1-UOB-3, TB1-UOB-4	First Permeable Units above the Confining Zones, and Sharon Sandstone	<i>All Wells:</i> Identify pre-injection groundwater quality and geochemistry 1: Record reservoir fluid chemical composition changes due to injection. 2: Early CO ₂ and reservoir brine containment loss detection/verification 3: CO ₂ and reservoir brine containment loss detection/verification

¹PNC logging or equivalent will occur in all wells in the above table during the baseline phase, in injection wells during injection phase, and only in those monitoring wells with CO₂ breakthrough or with detected containment loss during the injection and post injection phases of the project.


1.3.2. Geographic and Stratigraphic Locations

Surface locations within the AoR of all injection and observation wells, identified containment loss risks, and the CO₂ plume extents throughout the project are shown in Figure 1 and Figure 2. Project stratigraphy and expected elevations are shown in Figure 3. Table 1 outlines the well type, well names, objective monitoring zones, and approximate depths of zones.

The remainder of this page intentionally left blank.

Figure 1: Map of project showing AoR boundary and the proposed injection and observation well locations. The in-zone observation (TB1-IOB), above-zone observation (TB1-AOB), and deep (lowermost USDW) observation (TB1-UOB) wells are identified, as well as known Wells Creek Formation confining zone penetrations and wells without known depths.

Figure 2: Map of project showing AoR boundary and the proposed injection and observation well locations. The in-zone observation (TB1-IOB), above-zone observation (TB1-AOB), and deep (lowermost USDW) observation (TB1-UOB) wells are identified, as well as known Rochester Shale Formation confining zone penetrations.

Cambrian	Ordovician	Silurian	Devonian	Pennsylvanian	System	Series	Stratigraphic Unit (Group or Major Formation)	Aquifer, Confining Zone, or Reservoir	Oil Gas	Prod.	Depth/Interval Thickness (ft)											
											Average Depth (ft)	Average Thickness (ft)	TB1-1		TB1-2		TB1-3		TB1-4			
													Depth (ft TVD)	Thickness (ft)								
				Pennsylvanian (undivided)			Freshwater Aquifers															
				Pottsville Group (Base Sharon Mbr)			Lowest USDW				855			~755			~720			~900		~1,050
				Greenbriar Ls Fm			Seal (Limestone)															
					Pocono Grp		Big Injun SS	Conventional Oil Reservoir	●●													
							Sunberry Sh	Seal (Shale)														
							Berea SS	Conventional Oil Reservoir	●●													
				Ohio Shale Grp																		
				Olentangy Shale Fm	Tully Ls		Seal (Shale)															
				Mahantango Shale Fm																		
				Marcellus Shale Fm			Unconventional Oil Reservoir	●●														
				Onondaga Ls Fm			Seal (Limestone)				3,741	185	3,741	190	3,787	174	4,064	188	4,200	189		
				Oriskany SS Fm			Conventional Oil/Gas Reservoir	●●			3,931	11	3,931	11	3,960	13	4,252	11	4,389	9		
				Helderberg Grp			Seal (Limestone)				3,942	206	3,942	234	3,973	225	4,263	199	4,398	166		
				Bass Islands Dolomite Grp			Seal (Dolomite)				4,175	53	4,175	50	4,198	55	4,462	50	4,564	58		
					Salina Grp		Salina "D" – "G"	Upper Confining Zone (Evaporite/Salt)			4,225	848	4,225	794	4,253	824	4,512	853	4,622	920		
							Salina "A" – "C"															
				Lockport Dolomite Grp	①		Possible Injection Zone				5,024	290	5,024	300	5,076	290	5,364	279	5,541	293		
					Clinton Grp		Rochester Shale Fm	Middle Confining Zone			5,324	241	5,324	233	5,366	249	5,643	249	5,834	235		
							Dayton/Keefer Fm															
				Medina (Tuscarora SS) Grp	②		Injection Zone	●●		5,557	171	5,557	165	5,615	160	5,892	169	6,069	191			
							Informal – "Clinton" & "Medina" sands				5,722	↑	5,722	↑								
				Queenston Shale (Juniata Fm)			Lower Confining Zone	●●														
				Utica Shale Fm			Unconventional Oil Reservoir	●●			2,547	↓		2,500	5,775	2,583	6,060	2,551	6,260	2,555	↓	
				Trenton Grp																		
				Black River Ls Grp			Seal (Limestone)															
				Wells Creek Fm																		
				Beekmantown Dolomite			Upper Confining Zone	●●		8,222	97	8,222	83	8,357	98	8,611	99	8815	108			
				Rose Run SS	③		Injection Zone	●●		8,305	256	8,305	199	8,455	238	8,711	253	8923	335			
				Copper Ridge Dolomite Fm			Lower Confining Zone	●●		8,505	103	8,505	70	8,693	93	8,963	100	9258	150			
				Conasauga Group			Lowest Seal/Confining Unit	●●		8,575	361	8,575	384	8,786	364	9,063	359	9407	337			
										8,959		8,961		9,149		9,422		9,740				

Figure 3. Generalized stratigraphic column for the project. Primary Complexes: Medina Injection Complex: 2; and Knox Injection Complex: 3. (*Depth is to the top of the Stratigraphic Unit (SU), except where noted.) Modified from Childs, 1985; Patchen et al., 1985b; Riley et al., 2010; Wickstrom et al., 2005; WVGES, 2019.

1.3.3. Resource and Time Constraints

Tri-State CCS, LLC will coordinate deployment and uses of the monitoring and testing equipment described in the Testing and Monitoring Plan and in this QASP appropriate for field operations, service company availability (where necessary), other field-level logistics and operations, CO₂ source and pipeline operations, and community input.

1.4. Quality Objectives and Criteria

1.4.1. Performance/Measurement Criteria

Groundwater analytical and field monitoring parameters for each interval are listed in Table 4, Table 5, Table 6, and Table 7 show analytical parameters for CO₂ stream gas monitoring, corrosion coupon assessment, and gauge specifications. Table 8 shows the measurement parameters, and Table 9 shows the monitoring outputs. The list of analytes may be reassessed periodically and adjusted to include or exclude analytes based on their effectiveness to the overall monitoring program goals.

The remainder of this page intentionally left blank.

Table 4: Summary of Analytical and Field Parameters for Shallow USDW, Deep USDW, and Above-Zone Fluid Sampling.

Parameters	Analytical Methods	Detection Limit/Range	Typical Precisions	QC Requirements
Cations: Al, Ba, Mn, As, Cd, Cr, Cu, Pb, Sb, Se, and Tl	ICP-MS EPA Method 6020B (U.S. EPA, 2014a) or EPA Method 200.8 (U.S. EPA, 1994a)	0.001 to 0.1 mg/L (Analyte, dilution, and matrix dependent)	±15%	Daily Calibration; blanks, duplicates, and matrix spikes at 10% or greater frequency
Cations: Ca, Fe, K, Mg, Na, and Si	ICP-OES EPA Method 6010D (U.S. EPA, 2014b) or EPA Method 200.7 (U.S., EPA, 1994b)	0.005 to 0.5 mg/L (Analyte, dilution, and matrix dependent)	±15%	Daily Calibration; blanks, duplicates, and matrix spikes at 10% or greater frequency
Anions: Br, Cl, F, NO ₃ , and SO ₄	Ion Chromatography EPA Method 300.0 (U.S. EPA, 1993)	0.02 to 0.13 mg/L (Analyte, dilution, and matrix dependent)	±15%	Daily Calibration: blanks and duplicates at 10% or greater frequency
Dissolved CO ₂	Coulometric Titration ASTM 513-16 (ASTM, 2016)	25 mg/L	±15%	Duplicate measurement; standards at 10% or greater frequency
Total Dissolved Solids	Gravimetry APHA 2540C (APHA)	12 mg/L	±15%	Balance calibration, duplicate analysis
Water Density (field)	Oscillating Body Method	0.0000 to 2.0000 g/mL	±0.0002 g/mL	Duplicate measurements
Alkalinity	APHA 2320B (APHA 1997)	4 mg/L	±3 mg/L	Duplicate Analysis
pH (field)	EPA 150.1 (U.S. EPA, 1982)	2 to 12 pH units	±0.2 pH unit	User Calibration per manufacturer recommendation
Specific Conductance (field)	APHA 2510 (APHA, 1992)	0 to 200 mS/cm	±1% of reading	User calibration per manufacturer recommendation
Temperature (field)	Thermocouple	-5 to 50 °C	±0.2 °C	Factory Calibration
Isotopes: δ ¹³ C of DIC	Isotope Ratio Mass Spectrometry	12.2mg/L HCO ₃ ⁻ for δ ¹³ C	±0.15% for δ ¹³ C	10% duplicates; 4 standards/batch

Abbreviations: ICP = inductively coupled plasma; MS = mass spectrometry; OES = Optical emission spectrometry; GC-P = Gas chromatography-Pyrolysis

Table 5: Summary of Analytical Parameters for CO2 Stream.

Parameters	Method	Detection Limit/Range	Typical Precisions	QC Requirements
CO₂ Purity	ISBT 2.0 Caustic absorption Zahm-Nagel or online gas quality equipment	90.00% to 99.99%	± 10% of reading	User calibration per manufacturer specifications
Water Content	Online gas quality equipment	To be updated with manufacturer specifications	To be updated with manufacturer specifications	To be updated with manufacturer specifications
Total Hydrocarbons	ISBT 10.0 THA (FID) or online gas quality equipment	1 uL/L to 10,000 uL/L (ppm by volume)	5 - 10% of reading relative across the range	daily blank, daily standard within 10% of calibration, secondary standard after calibration
Inert Gasses (N₂, Ar, O₂)	ISBT 4.0 (GC/DID) GC/TCD or online gas quality equipment	1 uL/L to 5,000 uL/L (ppm by volume)	± 10% of reading	daily standard within 10% of calibration, secondary standard after calibration
Glycol	ISBT 11.0 (GC) or online gas quality equipment	2 uL/L to 100 uL/L (ppm by volume)-dilution dependent	10% of reading relative across the range	duplicate analysis
Hydrogen Sulfide	ISBT 14.0 (GC/SCD) or online gas quality equipment	0.1 uL/L to 100 uL/L (ppm by volume)-dilution dependent	5 - 10% of reading relative across the range	daily blank, daily standard within 10% of calibration, secondary standard after calibration
Total Sulfur	ISBT 14.0 (GC/SCD) or online gas quality equipment	0.01 uL/L to 50 uL/L (ppm by volume)-dilution dependent	5 - 10% of reading relative across the range	daily blank, daily standard within 10% of calibration, secondary standard after calibration
Hydrogen	ISBT 4.0 (GC/DID) GC/TCD or online gas quality equipment	1 uL/L to 5,000 uL/L (ppm by volume)	± 10% of reading	daily standard within 10% of calibration, secondary standard after calibration
Carbon Monoxide	ISBT 5.0 Colorimetric ISBT 4.0 (GC/DID) or online gas quality equipment	5 uL/L to 100 uL/L (ppm by volume)	± 20% of reading	duplicate analysis

Parameters	Method	Detection Limit/Range	Typical Precisions	QC Requirements
Oxygen	ISBT 4.0 (GC/DID) GC/TCD or online gas quality equipment	1 uL/L to 5,000 uL/L (ppm by volume)	± 10% of reading	daily standard within 10% of calibration, secondary standard after calibration
SO_x	ISBT 14.0 (GC) or online gas quality equipment	0.02 uL/L to 1.0 uL/L (ppm by volume)	5 - 10% of reading relative across the range	daily standard within 10% of calibration, secondary standard after calibration
NO_x	ISBT 7.0 or online gas quality equipment	0.5 uL/L to 5.0 uL/L (ppm by volume)	± 20% of reading	duplicate analysis
Ammonia (NH₃)	ISBT 6.0 (DT) or online gas quality equipment	0.5 uL/L to 2.5 uL/L (ppm by volume)	1 - 10% of reading relative across the range	duplicate analysis
Amine	DI (cond. and evap.)/UPLC-MSMS or online gas quality equipment	1 uL/L to 10 uL/L (ppm by volume)	± 10% of reading	duplicate analysis
Particulate Matter	Method 5 – Determination of Particulate Matter Emissions from Stationary Sources	To be updated with specifications	To be updated with specifications	Sampling equipment leak check and calibration

Note: Analytical parameters presented are for physical bottle sampling and laboratory analysis. A gas chromatograph will be installed to continuously detect CO₂ purity, total hydrocarbons, inert gases, hydrogen, alcohols, oxygen, carbon monoxide, and glycol. Annual bottle analysis will be performed to analyze the CO₂ stream for hydrogen sulfide, total sulfur and particulate matter. The detection range, accuracy, precision, and calibration requirements of the gas chromatograph will be shared with the UIC Program Director as requested.

The remainder of this page intentionally left blank.

Table 6: Specifications for MIT and Geophysical Monitoring Technology.

Logging Tool	Analytical Methods	Detection Limit/Range	Typical Precisions	QC Requirements	Calibration Frequency
Ultrasonic Cement Bond Log (SLB USI Tool)	Vendor best practice	0-10 MRayl	±0.5 MRayl	Vendor Calibration (3 rd party)	Per Vendor Discretion
PNC Logging (SLB RST Tool)	Vendor best practice	Porosity: 0 to 60 pu	TBD	Vendor Calibration (3 rd party)	Per Vendor Discretion
Distributed Temperature Sensing	Vendor best practice	-40 °F to 149 °F	0.01 °C	Vendor Calibration (3 rd party)	Per Vendor Discretion

Table 7: Summary of Analytical Parameters for Corrosion Coupons.

Parameters	Analytical Methods	Detection Limit/Range	Typical Precisions	QC Requirements
Mass	NACE RP0775-2018 (NACE, 2018)	0.005 mg	±2%	Annual Calibration of Scale (3 rd Party)
Thickness	NACE RP0775-2018 (NACE, 2018)	0.001 mm	±0.005 mm	Factory calibration

The remainder of this page intentionally left blank.

Table 8: Summary of Measurement Parameters for CO₂ Injection Process Monitoring.

Parameters	Methods	Detection Limit/Range	Vendor Specified Accuracy	QC Requirements	Calibration Frequency
Operational Annular Pressure Monitoring	ISO/IEC 17025 (2017)	0-3,000 psi	± 0.5% FS	Annual Calibration of Scale (3rd party)	As suggested by control system/gauge manufacturer
Wellhead Injection pressure (e.g., PPS PPS31 Wellhead Pressure Logger or similar product)	ISO/IEC 17025 (2017)	0-5,000 psi	±0.03% FS	Annual Calibration of Scale (3rd party)	As suggested by gauge manufacturer
Injection mass flow rate (e.g., Emerson Coriolis mass flow meter or similar product)	AGA Report 3 API Chapter 14 Part 3 (API, 2016)	547.95-3,561.64 Mt/d	±0.1% of rate for liquid ±0.35% of rate for gas	Annual Calibration of Scale (3rd party)	As suggested by gauge manufacturer
Downhole Pressure (e.g., Baker Hughes SureSENS QPT ELITE pressure/temperature gauge or similar product)	AWES Recommended Practice for the Qualification of Downhole Instrumentation / Sensors, RP 3362-01	200 psi to 10,000 psi	± 0.015% FS	Initial Manufacturer Calibration	Per manufacturer recommendation.

The remainder of this page intentionally left blank.

Table 9: Actionable Testing and Monitoring Outputs.

Activity or Parameter	Project Action Limit	Detection Limit	Anticipated Reading
DTS	Action to be taken when a temperature anomaly is observed	Refer to Table 6	Difference between profiles observed during baseline & injection stream temperature
PNC logging	Action to be taken when a CO ₂ saturation anomaly is observed	Refer to Table 6	TBD during baseline
Injection rate	Injection rate is reduced if max instantaneous rate of 1,429 Mt/d per well is reached	Refer to Table 8	KIC: 314 Mt/d for TB1-1, 371 Mt/d for TB1-2, 468 Mt/d for TB1-3, and 829 Mt/d for TB1-4 ²
			MIC: 140 Mt/d for TB1-1, 123 Mt/d for TB1-2, 160 Mt/d for TB1-3, and 191 Mt/d for TB1-4 ²
Surface/ downhole pressure	Injection stops if MASP ¹ is reached or 90% fracture pressure downhole is reached	Refer to Table 8	KIC: < 2,479 psig (TB1-1), < 2,524 psig (TB1-2), < 2,588 psig (TB1-3), and < 2,655 psig (TB1-4) at surface < 5,358 psig (TB1-1), < 5,477 psig (TB1-2), < 5,647 psig (TB1-3), and < 5,832 psig (TB1-4) downhole (see <i>Summary of Requirements – Class VI Operating and Reporting Conditions</i>)
			MIC: < 1,751 psig (TB1-1), < 1,765 psig (TB1-2), < 1,837 psig (TB1-3), and < 1,882 psig (TB1-4) at surface < 3,501 psig (TB1-1), < 3,537 psig (TB1-2), < 3,712 psig (TB1-3), and < 3,823 psig (TB1-4) downhole (see <i>Summary of Requirements – Class VI Operating and Reporting Conditions</i>)
Annular pressure	<3% pressure loss over 1 hour	Refer to Table 8	<3% pressure loss over 1 hour
Annular volume	10% loss of annular volume or continuous fluid make up exceeding 24 hours	Tank fluid level indicator	Annular fluid make up is expected when temperature of the fluid changes
Annular pressure/ volume	KIC: Action to be taken when annulus pressure is below 100 psi, above 2,579 psi for TB1-1, 2,624 psi for TB1-2, 2,688 psi for TB1-3, 2,755 psi for TB1-4, or less than injection pressure downhole in injection wells	Refer to Table 8	100-2,579 psi for TB1-1, 100-2,624 psi for TB1-2, 100-2,688 psi for TB1-3, 100-2,755 psi for TB1-4 at surface for KIC; Volume TBD during baseline
	MIC: Action to be taken when annulus pressure is below 100 psi, above 1,851 psi for TB1-1, 1,865 psi for TB1-2, 1,937 psi for TB1-3, 1,982 psi for TB1-4, or less than injection pressure downhole in injection wells		100-1,851 psi for TB1-1, 100-1,865 psi for TB1-2, 100-1,937 psi for TB1-3, 100-1,982 psi for TB1-4 at surface for MIC; Volume TBD during baseline

Activity or Parameter	Project Action Limit	Detection Limit	Anticipated Reading
Above-zone water quality (fluid sampling)	Action to be taken when chemical profile anomaly is observed	Refer to Table 4	Profiles TBD during baseline
Above-confining-zone pressure	Action will be taken when a pressure/temperature anomaly occurs	Refer to Table 4	Profiles TBD during baseline
CO ₂ plume monitoring	Action to be taken if CO ₂ plume is observed outside of expected/modelled spatial limits/geologic intervals	Dependent on geologic conditions	Profiles TBD during baseline

¹ Maximum anticipated surface pressure

² Assuming 350 days of injection, accounting for shut-in time

1.4.2. Precision

Groundwater sampling data accuracy will be assessed by the collection and analysis of field blanks to test sampling procedures and matrix spikes to test lab procedures. Field blanks will be taken no less than one per sampling event to spot check for sample bottle contamination. Laboratory assessment of analytical precision will be the responsibility of the individual laboratories. Third party laboratories used will be U.S. EPA approved and certified laboratories.

1.4.3. Bias

Laboratory assessment of analytical bias will be the responsibility of the individual laboratories per their standard operating procedures and analytical methodologies. Routine gauge or instrument calibration as identified in subsection 2.7 should help identify and remove any measurement biases.

1.4.4. Representativeness

Data representativeness expresses the degree to which data accurately and precisely represents population characteristics, individual sampling point parameter variations, or process or environmental conditions. The sampling network has been designed to provide data representative of site conditions. For analytical results of individual groundwater samples, representativeness will be estimated by ion and mass balances, where ion balances with $\pm 10\%$ error or less will be considered valid. Mass balance assessment will be used in cases where the ion balance is greater than $\pm 10\%$ to help determine the error source. For a sample and its duplicate, if the relative percent difference is greater than 10%, the sample may be considered non-representative.

1.4.5. Completeness

Data completeness is a measure of the amount of valid data obtained from a measurement system compared to the expected amount under normal conditions. It is anticipated that data completeness of 90% for groundwater sampling will be acceptable to meet monitoring goals. For direct pressure and temperature measurements, it is expected that data will be recorded no less than 90% of the time.

1.4.6. Comparability

Data comparability is the confidence with which one dataset can be compared to another. Datasets for the project will be generated in accordance with a consistent methodology so that each dataset is comparable to another. This allows for appropriate data comparison and identification of anomalies if present. To ensure appropriate QA/QC standards, direct pressure, temperature, and logging measurements obtained through the proposed operations will be directly comparable to data previously obtained.

1.4.7. Method Sensitivity

The sensitivities and specifications of example gauges used for measurements in this project are described in detail in Table 10, Table 11, Table 12, and Table 13. Specific tools and measurement specifications may change during the detailed design phase following collection and characterization of data gathered from the CarbonSAFE stratigraphic test wells.

Table 10: Pressure - Downhole Gauge Vendor Specifications.¹

Parameter	Value
Calibrated working pressure range	200 psi to 10,000 psi
Initial pressure accuracy	+-0.015% (1.5 psi at full scale)
Pressure resolution	0.0001 psi
Pressure drift stability	2.0 psi per year at full scale

¹ Specifications from the *Baker Hughes SureSENS QPT ELITE Pressure/Temperature Gauge* are provided as an example of typical specifications from a vendor. A similar product may be used.

Table 11: Representative Logging Tool Specifications.¹

Parameter	Ultrasonic Imager Log	PNC/ Reservoir Saturation Tool	DTS
Logging speed	1,800 ft/hr.	150 ft/hr.	NA
Vertical resolution	6 inches	24 inches	*25-50 cm
Investigation	Casing-to-cement interface	4-6 inches	At fiber location
Temperature rating	350°F (175°C)	300°F (150°C)	149°F
Pressure rating	20,000 psi	15,000 psi	20 psi

¹ Specifications from SLB PNC tools.

Table 12: Wellhead Pressure/Temperature Gauge Vendor Specifications.¹

Parameter	Value
Calibrated working pressure range	0-5,000 psi
Initial pressure accuracy	±0.05% FS
Pressure resolution	0.03% FS
Pressure drift stability	< 3.0 psi
Calibrated working temperature range	-20 °F to 200 °F
Initial temperature accuracy	±0.15 °F (0.5 °C)
Temperature resolution	0.1 °F (0.01 °C)
Max temperature	200 °F

¹ Specifications from a *PPS PPS31 Wellhead Pressure Logger* are provided as an example of typical specifications from a vendor. A similar product may be used.

Table 13: Mass Flow Rate Field Gauge—CO₂ Mass Flow Rate Vendor Specifications.¹

Parameter	Value
Calibrated working flow rate range	65.4-2,100 Mt/d
Mass flow rate accuracy	±0.50% of rate (liquid), ±1.0% of rate (gas)
Mass flow rate repeatability	±0.50% of rate (liquid), ±1.0% of rate (gas)
Mass flow rate drift stability	To be determined

¹ Specifications from an *Emerson Coriolis Mass Flow Meter* are provided as an example of typical specifications from a vendor. A similar product may be used.

1.5. Special Training/Certifications

1.5.1. Specialized Training and Certifications

The geophysical survey equipment and wireline logging tools will be operated by trained, qualified, and certified personnel, according to the service company that provides the equipment. The subsequent data will be processed and analyzed according to industry standards. Groundwater sampling and laboratory chemical analysis will be evaluated by U.S. EPA certified laboratories that employ qualified and experienced personnel who understand and regularly follow environmental sampling/chemical analysis standard operating procedures and quality control protocols. Tri-State CCS, LLC will provide relevant certifications for all vendor/subcontractor staff upon request.

1.5.2. Training Provider and Responsibility

Tri-State CCS, LLC or the designated subcontractor for the data collection activities will provide necessary training for personnel.

1.6. Documentation and Records

1.6.1. Report Format and Package Information

The Semi-Annual Testing and Monitoring Report from Tri-State CCS, LLC to the UIC Program Director will contain all required project data, including testing and monitoring information in accordance with 40 CFR 146.91(a). Data will be provided in electronic or other formats as required by the UIC Program Director. Further reporting and recordkeeping details can be found in subsection 2.5 of the Testing and Monitoring Plan.

1.6.2. Other Project Documents, Records, and Electronic Files

Other documents, records, and electronic files such as well logs, test results, or other data will be provided as required by the UIC Program Director and maintained for 10 years post site closure.

1.6.3. Data Storage and Duration

Pursuant to 40 CFR 146.91(f)(3), any monitoring data collected through implementation of the Testing and Monitoring Plan will be retained for at least 10 years after it is collected. All site characterization data will be retained throughout the life of the geologic sequestration project and for at least 10 years following site closure. Tri-State CCS, LLC or a designated contractor will maintain the required project data as provided elsewhere in the permit. See subsection 2.5 of the Testing and Monitoring Plan for recordkeeping details.

1.6.4. QASP Distribution Responsibility

The Tri-State CCS, LLC Project Manager will be responsible for ensuring those on the distribution list will receive the most current copy of the approved QASP during the pre-operational testing period, and the Operations Manager will be responsible for distribution during the injection and post-injection periods.

2. Data Generation and Acquisition

2.1. Sampling Process Design

This section describes the monitoring network that will be used to support collection of the various characterization and monitoring measurements needed to ensure safe and nominal CO₂ injection operations, track the development of the CO₂ plume and elevated pressure front, and identify/quantify any potential leakage of CO₂. Based on the current conceptual understanding of project geology, this strategy was developed to ensure safe, long-term containment of CO₂ within the injection interval and non-endangerment of USDWs.

2.1.1. Design Strategy

2.1.1.1. CO₂ Stream Monitoring Strategy

The objective of routinely analyzing the CO₂ stream is to evaluate the potential interactions of CO₂ and/or other constituents of the injectate with formation solids and fluids. This analysis can also identify (or rule out) potential interactions with well materials. Establishing the chemical

composition of the injectate also supports regulatory determinations under the Resource Conservation and Recovery Act (RCRA, 1976) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 1980). Additionally, monitoring the chemical and physical characteristics of the CO₂ may help distinguish the injectate from the native fluids and gases if unintended leakage from the storage reservoirs were to occur.

Tri-State CCS, LLC expects multiple sources of CO₂ from the region, with additional sources to be added throughout the life of the project. Each source will have a different gas stream composition, and the composition of the final injected gas stream will change slightly depending on which sources are operational. To detect any significant changes in the physical or chemical properties of the CO₂ stream that may result in a deviation from the permitted specifications, Tri-State CCS, LLC will analyze the CO₂ stream at a minimum every 24 hours with gas chromatographs located downstream of all CO₂ sources or prior to the storage complex pipeline manifold as discussed in subsections 2.3 and 3.1 of the Testing and Monitoring Plan. Physical samples may also be taken through a sampling port near the gas chromatograph.

2.1.1.2. Corrosion Monitoring Strategy

To meet the requirements of 40 CFR 146.90(c), Tri-State CCS, LLC will monitor well materials during the operation period for loss of mass, thickness, cracking, pitting, and other signs of corrosion to ensure that the well components meet the minimum standards for material strength and performance using the corrosion coupon method. Coupons shall be sent out quarterly for analysis, which will be conducted in accordance with the NACE RP0775-2018 (NACE, 2018) standard to determine and document corrosion wear rates based on mass loss.

2.1.1.3. Shallow Groundwater Monitoring Strategy

Shallow groundwater monitoring will be performed during the year-long pre-injection period, to capture seasonal variations in the groundwater geochemistry. The USDW monitoring program will meet the requirements of 40 CFR 146.90(d) and will include baseline groundwater samples to characterize variations in water quality within the AoR prior to the start of CO₂ injection. These wells will not be sampled and analyzed during the injection phase but may be used to provide additional evidence for groundwater protection should the operator or UIC program director deem it necessary.

2.1.1.4. Above-Zone and Deep Groundwater Monitoring Strategy

Three above-zone observation wells (TB1-AOB-1, TB1-AOB-2, TB1-AOB-3), will be completed in the first permeable units above the confining zones, and four deep USDW observation wells (TB1-UOB-1, TB1-UOB-2, TB1-UOB-3, TB1-UOB-4) will be completed in the lowermost USDW (Sharon Sandstone). The above-zone observation wells will serve to detect any early leakage above both the confining zones (Wells Creek Formation for the KIC or Rochester Shale for the MIC), and the deep USDW observation wells will monitor the formation fluid geochemistry of the lowermost USDW. In addition to baseline sample collection and analysis prior to the start of injection, pressurized fluid samples will be collected from the observation wells during the injection phase. MIT and DTS monitoring at the injection wells will also provide data to ensure the mechanical integrity of the well is maintained. With the planned sampling and monitoring

frequencies, baseline conditions will be documented, natural variability in conditions will be characterized, unintended brine or CO₂ leakage will be detected, and sufficient data will be collected to demonstrate that the effects of CO₂ injection are limited to the intended Knox Group and Medina Group storage reservoirs.

Parameters will include selected constituents that: (1) have primary and secondary U.S. EPA drinking water maximum contaminant levels, (2) are the most responsive to interaction with CO₂ or brine, (3) are needed for quality control, and (4) may be needed for geochemical modelling. After a sufficient baseline is established, monitoring scope may shift to a subset of indicator parameters that are (1) the most responsive to interaction with CO₂ or brine and (2) are needed for quality control to accurately test for and monitor the presence (or lack thereof) of CO₂ migration. Implementation of a reduced set of parameters would be adopted in consultation with the UIC Program Director. During any period where a reduced set of analytes is used, if statistically significant trends are observed that are the result of unintended CO₂ or brine migration, the analytical list would be expanded to the full set of monitoring parameters. All groundwater and formation fluid samples will be analysed using a laboratory meeting the requirements under the U.S. EPA Environmental Laboratory Accreditation Program. The full list of analytical parameters and selected methods is provided in Table 4.

2.1.1.5. In-Zone Formation Water Monitoring Strategy

In-zone formation water quality and geochemistry monitoring will occur through fluid sampling and analysis during the pre-injection phase and through downhole pressure gauges (quality) during the injection phase (see subsection 6.1 of the Testing and Monitoring Plan for more details). During the pre-injection phase of the project, the injection wells (TB1-1, TB1-2, TB1-3, TB1-4) and in-zone observation wells (TB1-IOB-1, TB1-IOB-2, TB1-IOB-3, TB1-IOB-4) will be monitored to obtain a baseline sufficient to distinguish any changes in fluid quality and chemistry due to injection of CO₂. During the injection phase of the project, downhole pressure gauges on the in-zone observation wells (TB1-IOB-1, TB1-IOB-2, TB1-IOB-3, TB1-IOB-4) will be monitored to detect any loss of containment.

2.1.1.6. Direct CO₂ Plume and Pressure Front Monitoring Strategy

Downhole pressure gauges will be used in all observation and injection wells to directly monitor the formation pressure of the injection reservoir (Medina and Knox Groups) and above-zone interval. Downhole pressure gauges will continuously monitor for any changes in injection pressure or in-zone and above-zone pressure.

2.1.1.7. Indirect CO₂ Plume and Pressure Front Monitoring Strategy

Several technologies will be deployed within the injection and in-zone observation wells to indirectly monitor the presence/absence of the CO₂ plume and elevated pressure front. All injection and in-zone observation wells will contain DTS in the cemented long string casing and record continuous temperature measurements. External mechanical integrity will be monitored continuously using DTS in the injection and in-zone observation wells. PNC logging techniques will be utilized to verify external MIT for each injection and in-zone observation well by detecting the presence or absence of CO₂ in critical formations. PNC logging will also serve to track the CO₂

plume progression in the in-zone observation wells.

2.1.2. Type and Number of Samples/Test Runs

The types and frequencies of sampling and testing activities are shown in Table 2.

2.1.3. Site/Sampling Locations

The site and sampling locations are shown in Figure 1 and Table 2.

2.1.4. Sampling Site Contingency

The shallow and deep groundwater monitoring wells will be sited at or near their projected locations in such a way to allow regular access to perform testing activities. No problems of site inaccessibility are anticipated for CO₂ gas or corrosion coupon sampling. If inclement weather makes site access difficult, sampling schedules will be revised, and alternative dates may be selected that would still meet permit-related conditions.

2.1.5. Activity Schedule

Please refer to Sections 2 through 8 of the Testing and Monitoring Plan for a schedule of sampling and test runs.

2.1.6. Critical/Informational Data

During sampling and analysis activities, detailed field and laboratory documentation will be collected in standard forms or notebooks. Critical information will include the time, date, and location of the activity; personnel involved; analytical equipment used; and a record of the analytical parameters, calibrations, and standards. For laboratory analyses, many critical data are generated during the analysis process and provided to end users in digital and printed formats. Noncritical data may include appearance and odor of the sample, issues with well or sampling equipment, and weather conditions.

2.1.7. Sources of Variability

Potential sources of variability related to monitoring activities include: (1) natural variation in fluid quality, formation pressure and temperature and seismic activity; (2) variation in fluid quality, formation pressure and temperature, and seismic activity due to project operations; (3) changes in recharge due to rainfall, drought, and snowfall; (4) changes in instrument calibration during sampling or analytical activity; (5) different staff collecting and/or analyzing samples; (6) differences in environmental conditions during field sampling activities; (7) changes in analytical data quality during life of project; and (8) data entry errors related to maintaining project database.

Activities to eliminate, reduce, or reconcile variability related to monitoring activities include: (1) collecting long-term baseline data to observe and document natural variation in monitoring parameters, (2) evaluating data in a timely manner after collection to observe anomalies in data that can be addressed by resampling and/or reanalyzing, (3) conducting statistical analysis of monitoring data to determine whether variability in a data set is the result of project activities or

natural variation, (4) maintaining weather-related data using on-site weather monitoring data or data collected near project site, (5) checking instrument calibration before, during and after sampling or sample analysis, (6) thoroughly training staff, (7) conducting laboratory quality assurance checks using third party reference materials, and/or blind and/or replicate sample checks, and (8) developing a systematic review process of data that can include sample-specific data quality checks (i.e., cation/anion balance for aqueous samples).

2.2. Sampling Methods

2.2.1. Sampling Standard Operating Procedures

The primary groundwater sampling method will be a low-flow sampling method consistent with ASTM D6452-99 (ASTM, 2005) or Puls and Barcelona (Puls, et. al., 1996). If a flow-through cell is not used, field parameters will be measured in grab samples. Prior to sampling, wells will be purged to ensure samples are representative of formation fluids. Before any purging or sampling activities begin, static water levels will be measured using an electronic water level indicator. Each groundwater monitoring well will contain a dedicated pump (e.g., bladder pumps) to minimize potential cross contamination between wells. Given sufficient flow rates and volumes, field parameters such as groundwater pH, temperature, specific conductance, and dissolved oxygen will be monitored in the field using portable probes and a flow-through cell consistent with standard methods (APHA 2005). Field chemistry probes will be calibrated at the beginning of each sampling day according to equipment manufacturer procedures using standard reference solutions. When a flow-through cell is used, field parameters will be continuously monitored and will be considered stable when three successive measurements made three minutes apart meet the criteria listed in Table 14.

Table 14: Stabilization Criteria of Water Quality Parameters During Shallow Well Purging.

Field Parameter	Stabilization Criteria
pH, temperature, specific conductance, dissolved oxygen, turbidity	*Parameter measurement until $\pm 10\%$ value stabilization

*Exact parameter stabilization threshold will depend on which purge method is selected from the ASTM standard.

Groundwater samples will be collected after field parameters have stabilized. Flow-through filter cartridges (0.45 μm) will be utilized as required and consistent with ASTM D6564-00 (ASTM, 2017). Prior to sample collection, filters will be purged with a minimum of 100 mL of well water (or more if required by the filter manufacturer). For alkalinity and total CO₂ samples, efforts will be made to minimize exposure to the atmosphere during filtration, collection in sample containers, and analysis.

2.2.2. In-situ Monitoring

In-situ monitoring of groundwater chemistry is not planned for this project.

2.2.3. Continuous Monitoring

2.2.3.1. Injection Process Monitoring

Data related to the operational process (injection rate and volume and annular pressure and volume) will be continuously monitored with pressure gauges, flow meters, and the annulus monitoring system, all of which will be linked to the surface control system controlled by Tri-State CCS, LLC. This operational data will ensure that injection is operating safely, efficiently, and not posing a risk to any USDWs. Additionally, continuously monitored operational parameters will feed into reservoir and computational models to validate that the CO₂ plume and pressure front are behaving as expected.

2.2.3.2. Distributed Temperature Sensing (DTS)

DTS technology will continuously collect temperature data along a fiberoptic line installed along the outside of the long-string casing. The DTS line will collect temperature data along the long-string casing at set intervals of time which will be used when running external mechanical integrity tests to verify mechanical integrity and monitor the presence or absence of the CO₂ plume.

2.2.3.3. Pressure Gauges

Downhole pressure gauges will be deployed within all observation wells to continuously measure pressure variations within the injection interval and the above-zone monitoring interval. Downhole pressure gauges will directly monitor the presence or absence of the elevated pressure front.

2.2.4. Sample Homogenization, Composition, and Filtration

See subsection 2.2.1 above.

2.2.5. Sample Containers and Volumes

All samples will be collected in new containers using industry-accepted standards and practices. Container type and size for each sample type are listed in Table 15 and Table 16.

Table 15: Summary of Sample Containers, Preservation Treatments, and Holding Times for CO₂ Gas Stream Analysis.

Sample	Volume/Container Material	Preservation Technique	Sample Holding time (max)
CO ₂ gas stream	(2) 2L MLB Polybags (1) 75 cc Mini Cylinder	Sample Storage Cabinets	5 Business Days

The remainder of this page intentionally left blank.

Table 16: Summary of Anticipated Sample Containers, Preservation Treatments, and Holding Times for Groundwater Samples.

Target Parameters	Volume/Container Material	Preservation Technique	Sample Holding Time
Cations: Ca, Fe, K, Mg, Na, Si, Al, Ba, Mn, As, Cd, Cr, Cu, Pb, Sb Se, Tl	250 ml/HDPE	Filtered, with nitric acid preservative, cool 4°C	60 days
Dissolved CO ₂	2 × 60 ml/HDPE	Unfiltered, cool 4°C	14 days
Isotopes: ^3H , δD , $\delta^{18}\text{O}$, $\delta^{34}\text{S}$, and $\delta^{13}\text{C}$	2 × 60 ml/HDPE	Unfiltered, cool 4°C	4 weeks
Isotopes: $\delta^{34}\text{S}$	250 ml/HDPE	Unfiltered, cool 4°C	4 weeks
Isotopes: δD , $\delta^{18}\text{O}$, $\delta^{13}\text{C}$	60 ml/HDPE	Unfiltered, cool 4°C	4 weeks
Alkalinity, anions (Br, Cl, F, NO ₃ , SO ₄)	500 ml/HDPE	Filtered, cool 4°C	45 days
Field Confirmation: Temperature, dissolved oxygen, specific conductance, pH	200 ml/glass jar	None	< 1 hour
Field Confirmation: Density	60 ml/HDPE	Filtered	< 1 hour

2.2.6. Sample Preservation

Sample preservation methods are outlined in Table 15 and Table 16. Safety Data Sheets will be maintained and available at the project site for any chemicals used in sample preservation.

2.2.7. Cleaning/Decontamination of Sampling Equipment

Dedicated pumps (e.g., bladder pumps) will be installed in each groundwater monitoring well to minimize potential cross contamination between wells. These pumps will remain in each well throughout the project period except for maintenance. Prior to installation, the pumps will be cleaned externally with a non-phosphate detergent. Pumps will be rinsed a minimum of three times with 18 megohm purity deionized water and a minimum of 1 L of deionized water will be pumped through the pump and sample tubing for cleaning. Individual cleaned pumps and tubing will be placed in plastic bags for transport to the field for installation. All field glassware (pipets, beakers, filter holders, etc.) will be cleaned with tap water to remove any loose dirt, washed in a dilute nitric acid solution, and rinsed thoroughly, at least three times with deionized water before use.

2.2.8. Support Facilities

The following tools may be needed to sample groundwater: generator, vacuum pump, peristaltic pump, compressor, multi-electrode water quality sonde, and various meters to take analytical measurements such as pH and electrical conductance. Analytical field activities may take place in field vehicles and/or portable onsite trailers. Well gauges used for verification will be handled using industry standard best practices and procedures recommended from the vendor.

Coupons consisting of material that will directly contact the CO₂ stream will be placed within a flowline. Each sample will be attached to an individual holder and inserted in a flowthrough pipe arrangement, exposing the samples to the CO₂ stream, and allowing access for removal and testing. The flowthrough pipe arrangement will be located at the well location downstream of all process compression, dehydration, and pumping equipment. A parallel stream of high-pressure CO₂ will be routed from the flowline through the corrosion monitoring system. This loop will operate while injection is occurring, providing representative exposure of the samples to the CO₂ composition, temperature, and pressures that will be seen at the wellhead and injection tubing. Injection will be able to continue while samples are removed for testing (see subsection 5.3 of the Testing and Monitoring Plan for more details).

2.2.9. Corrective Action, Personnel, and Documentation

Field staff will be responsible for properly testing equipment and performing corrective actions on broken or malfunctioning field equipment. If corrective action cannot be taken in the field, then equipment will be returned to the manufacturer for repair or replaced. Significant corrective actions affecting analytical results will be documented in field notes. If defective equipment causes disruptions to the sampling schedule, Tri-State CCS, LLC will contact the UIC Program Director.

2.3. Sample Handling and Custody

Sample handling and hold times will be congruent with U.S. EPA (1974), APHA (APHA, 2005), Wood (Wood, 1976), and ASTM Method D6517-00 (ASTM, 2005) standards. Samples will be kept at their preservation temperature and sent to the selected laboratory within 24 hours of collection. Analysis of the samples will be completed within the holding time specified in Table 15. If alternative sampling methods become necessary, these methods will be discussed with the UIC Program Director prior to sampling.

2.3.1. Maximum Hold Time/Time Before Retrieval

Please refer to Table 15 and Table 16.

2.3.2. Sample Transportation

Samples will be transported in coolers with ice maintained to approximately 4 degrees Celsius and sent to approved laboratory within 24 hours of sampling.

2.3.3. Sampling Documentation

Sampling personnel will compile field documentation for all groundwater samples collected. Field notes will be archived.

2.3.4. Sample Identification

Each groundwater sample container will have a label with the following information: project name/number, sample date and location, sample ID number, fresh or brine water, volume taken, analyte, filtration used (if applicable), and preservative used (if any).

2.3.5. Sample Chain-of-Custody

A standardized form will be used to document groundwater sample chain-of-custody. Copies of this form will be provided to laboratory personnel upon delivery of groundwater samples for analysis. These forms will be archived for future reference.

2.4. Analytical Methods

2.4.1. Analytical Standard Operating Procedures

Analytical standard operating procedures are referenced in Table 4 through Table 8. Other laboratory specific standard operating procedures utilized by the laboratory will be determined after a contract laboratory has been selected. Upon request, Tri-State CCS, LLC will provide the UIC Program Director with all laboratories standard operating procedures developed for the specific parameter using the appropriate standard method. Each laboratory technician conducting the analysis on the samples will be trained on the standard operating procedure developed for each standard method.

2.4.2. Equipment/Instrumentation Needed

Equipment and instrumentation are specified in the individual analytical methods referenced in Table 4 through Table 8.

2.4.3. Method Performance Criteria

Nonstandard method performance criteria are not anticipated for this project.

2.4.4. Analytical Failure

Each laboratory conducting the analyses in Table 4 through Table 8 will be responsible for appropriately addressing analytical failure according to their individual standard operating procedures.

2.4.5. Sample Disposal

Each laboratory conducting the analyses in Table 4 through Table 8 will be responsible for appropriate sample disposal according to their individual standard operating procedures.

2.4.6. Laboratory Turnaround

Laboratory turnaround will vary by laboratory, but turnaround of verified analytical results within two months will be suitable for project needs.

2.4.7. Method Validation for Nonstandard Methods

Nonstandard methods are not anticipated for this project. If nonstandard methods are needed or proposed in the future, the UIC Program Director will be consulted on appropriate actions to be taken.

2.5. Quality Control

2.5.1. QC activities

2.5.1.1. *Blanks*

Field blanks will be utilized for both shallow and deep groundwater sampling to identify potential contamination due to the collection and transportation processes. Field blanks will be collected and analyzed for the inorganic analytes listed in Table 4 at a frequency of 10% or more. The field and transportation conditions for field blanks will be the same as those of the groundwater samples.

Trip blanks will be used when analyzing samples for volatile organic compounds or dissolved gases. One trip blank will be included with each cooler or shipping container used to transport water samples to the laboratory. The trip blank will consist of a sample container filled with laboratory-grade deionized water that is prepared by the laboratory, sealed, and transported to and from the sampling site unopened. The trip blank will be handled, stored, and analyzed in the same manner as the groundwater samples. The purpose of the trip blank is to determine if contamination was introduced during sample transport and handling.

2.5.1.2. *Duplicates*

During each round of shallow groundwater sampling, a second groundwater sample is collected from one well, selected based on a rotating schedule. These duplicate samples are collected from the same source and at the same time as the original sample in a different, yet identical, sample container. Duplicate samples are processed with all other samples and are used to determine sample heterogeneity and analytical precision.

2.5.2. Exceeding Control Limits

If the sample analytical results exceed control limits (i.e., ion balances $> \pm 10\%$), further examination of the analytical results will be done by evaluating the ratio of the measured total dissolved solids (TDS) to the calculated TDS (i.e., mass balance) per APHA method. The method indicates which ion analyses should be considered suspect based on the mass balance ratio. Suspect ion analyses are then reviewed in the context of historical data and interlaboratory results, if available. Suspect ion analyses are then brought to the attention of the analytical laboratory for confirmation and/or reanalysis. The ion balance is recalculated, and if the error is still not resolved, suspect data are identified and may be given less importance in data interpretations.

2.5.3. Calculating Applicable QC Statistics

2.5.3.1. *Charge Balance*

The groundwater sample analytical results are evaluated to determine correctness of analyses based on anion-cation charge balance calculation. All potable waters are electrically neutral; thus, the chemical analyses should produce equally negative and positive ionic activity. The anion-cation charge balance will be calculated using the formula:

$$\% \text{ difference} = 100 * \frac{\sum \text{cations} - \sum \text{anions}}{\sum \text{cations} + \sum \text{anions}} \quad \text{Equation 1}$$

where the sums of the ions are represented in milliequivalents (meq) per liter, and the criteria for acceptable charge balance is $\pm 10\%$.

2.5.3.2. *Mass Balance*

The ratio of the measured TDS to the calculated TDS will be calculated in instances where the charge balance acceptance criteria are exceeded using the formula:

$$1.0 < * \frac{\text{measured TDS}}{\text{calculated TDS}} < 1.2 \text{ , with anticipated values between 1.0 and 1.2.} \quad \text{Equation 2}$$

2.5.3.3. *Outliers*

The determination of one or more statistical outliers is essential prior to the statistical evaluation of groundwater. This project will use the U.S. EPA's Unified Guidance (U.S. EPA, 2009) as a basis for selection of recommended statistical methods to identify outliers in groundwater chemistry data sets as appropriate. These techniques include: Probability Plots, Box Plots, Dixon's test, and Rosner's test. The EPA-1989 (U.S. EPA, 2009) outlier test may also be used as another screening tool to identify potential outliers.

2.6. **Instrument/Equipment Testing, Inspection, and Maintenance**

Logging tool equipment will be maintained as per wireline industry best practices. Pressure gauges will be maintained to manufacturer standards. For groundwater sampling, field equipment will be maintained, factory serviced, and factory calibrated per manufacturer's recommendations. Spare parts that may be needed during sampling will be included in supplies on-hand during field sampling. For laboratory equipment, all testing, inspection, and maintenance will be the responsibility of the analytical laboratory per standard practice or method-specific protocol.

2.7. **Instrument/Equipment Calibration and Frequency**

2.7.1. Calibration and Frequency of Calibration

Pressure gauge calibration information is presented in Table 11 and Table 12. All field and downhole gauges will be calibrated prior to use by the equipment supplier. Gauges will be recalibrated as needed based on results of inspection, or after any repairs or maintenance. Logging tool calibration will be at the discretion of the service company providing the equipment, following standard industry practices. Calibration frequency will be determined by standard industry practices. CO₂ flow meters will be calibrated using industry standards and at a frequency recommended by the manufacturer.

For groundwater sampling, portable field meters or multiprobe sondes used to determine field parameters (e.g., pH, temperature, specific conductance, dissolved oxygen) will be calibrated according to manufacturer recommendations and equipment manuals (Hach, 2006) before sample

collection begins. Recalibration is performed if any components yield atypical values or fail to stabilize during sampling.

For CO₂ stream sampling, the gas chromatograph will be calibrated based on the manufacturer's guidance.

2.7.2. Calibration Methodology

Calibration of the orifice flow meters will be carried out using the carrier gas to validate the characteristics of the approved CO₂ composition using methods described in Table 8 (API MPMS, 2016). Logging tool and all field and downhole gauge calibration methodology will follow standard industry practices recommended by the respective manufacturers.

For groundwater sampling, standards used for calibration typically require a pH of 7 and 10, a potassium chloride solution with 1,413 microsiemens per centimeter (μS/cm) at 25°C for specific conductance, and a 100% dissolved oxygen solution. Calibration of pH meters will be performed per manufacturer's specifications using a 2-point calibration bounding the range of the sample. For coulometry, sodium carbonate standards (typically with a concentration of 4,000 mg CO₂/L) are routinely analyzed to evaluate instruments.

2.7.3. Calibration Resolution and Documentation

Logging tool calibration resolution and documentation will follow standard industry practices. Groundwater sampling equipment calibration occurs regularly, and values are recorded in sampling records, with any errors in calibration noted. For parameters where calibration is not acceptable, redundant equipment may be used so loss of data is minimized.

2.8. Inspection/Acceptance for Supplies and Consumables

2.8.1. Supplies, Consumables, and Responsibilities

Individual vendors and subcontractors selected and approved by Tri-State CCS, LLC will be responsible for ensuring that all supplies and consumables for field and laboratory operations are inspected and acceptable for data collection activities. Procurement of supplies and consumables related to groundwater analyses will be the responsibility of the laboratory conducting water analyses in accordance with the established standard methodologies and operating procedures.

2.9. Non-direct Measurements

2.9.1. Data Sources

Plume development will also be monitored via DTS and PNC logs. PNC logs detect CO₂ concentration surrounding the wellbore and repeat logging runs will be compared to the baseline conducted before injection operations begin. DTS monitors variations in temperature along the wellbore at a high resolution, measured every 10 minutes.

2.9.2. Relevance to Project

Scheduled PNC logging will be used to track CO₂ plume movement. After initial baseline testing is conducted prior to injection, processing and comparison of subsequent surveys will allow Tri-State CCS, LLC to monitor the extent of the plume, ensuring that the plume is contained and behaving as expected. Numerical modeling will be updated with new seismic, pressure, and saturation data throughout the project to best characterize the CO₂ plume growth and movement over time.

2.9.3. Acceptance Criteria

Gauges and other logging equipment used to collect non-direct measurements will be checked periodically and maintained according to manufacturer recommendations for equipment care and operation, to ensure the accuracy of readings as they are incorporated into the model.

2.9.4. Resources/Facilities Needed

Tri-State CCS, LLC will subcontract all necessary resources and facilities for logging, in-zone pressure monitoring, and groundwater sampling.

2.9.5. Validity Limits and Operating Conditions

Intraorganizational verification by trained and experienced personnel will ensure that any required numerical modeling is conducted according to industry standards.

2.10. Data Management

2.10.1. Data Management Scheme

Tri-State CCS, LLC or a designated contractor will maintain the required project data provided for in the permit. Data will be backed up on secure servers.

2.10.2. Recordkeeping and Tracking Practices

All records of gathered data will be securely held and properly labeled for auditing purposes.

2.10.3. Data Handling Equipment/Procedures

All equipment used to store data will be properly maintained and operated according to proper industry techniques. Tri-State CCS, LLC will ensure that all necessary supervisory control and data acquisition (SCADA) systems and vendor data acquisition systems will interface with one another, and that all subsequent data will be held on a secure server. Meter data will be captured via the flow computer.

2.10.4. Responsibility

The Tri-State CCS, LLC Project Manager will be responsible for ensuring proper data management is maintained during pre-operational testing and the Operations Manager for the injection and post-injection periods.

2.10.5. Data Archival and Retrieval

All data will be held and maintained by Tri-State CCS, LLC. Data will be backed up on secure servers to be accessed by project personnel as required.

2.10.6. Hardware and Software Configurations

All Tri-State CCS, LLC, and vendor hardware and software configurations will interface appropriately.

2.10.7. Checklists and Forms

Checklists and forms will be generated and completed as necessary based on project need.

3. Assessment and Oversight

3.1. Assessments and Response Actions

3.1.1. Activities to be Conducted

Refer to Table 2 and Table 3 for a summary of work to be performed and proposed work schedule. After completion of groundwater sample analysis, the results will be reviewed for quality control criteria as noted in subsection 2.5. If the data fails to meet the established quality criteria, samples will be reanalyzed if still within the holding time criteria. If outside of holding time criteria, additional samples may be collected, or sample results may be excluded from data evaluations and interpretations. Evaluation for data consistency will be performed according to procedures described in the U.S. EPA 2009 Unified Guidance.

3.1.2. Responsibility for Conducting Assessments

Each organization gathering data will be responsible for conducting their own internal assessments. All stop work orders will be handled internally within each individual organization.

3.1.3. Assessment Reporting

All assessment information will be reported to the Tri-State CCS, LLC Project Manager during pre-operational testing or Operations Manager during injection and post-injection.

3.1.4. Corrective Action

All corrective actions which may affect a single organization's data collection responsibility shall be addressed, verified, and documented by the individual project managers, and communicated to others, as necessary. Corrective actions affecting multiple organizations should be addressed by all members of the project leadership and communicated to other members on the QASP distribution list. Integration of information from multiple monitoring sources (operational, in-zone monitoring, above-zone monitoring) may be required to determine whether data and/or measurement method corrections are required, as well as the most effective and cost-efficient action to implement. Tri-State CCS, LLC will coordinate multiorganization assessments and

corrective actions as needed.

3.2. Reports to Management

3.2.1. QA Status Reports

QA status reports are not required unless there are significant adjustments to the methods and procedures listed above. If any testing or monitoring techniques are changed, this QASP will be reviewed and updated appropriately after consultation with the UIC Program Director. The revised QASP will be distributed by Tri-State CCS, LLC to the full distribution list noted at the beginning of this document.

4. Data Validation and Usability

4.1. Data Review, Verification, and Validation

4.1.1. Criteria for Accepting, Rejecting, or Qualifying Data

Validation of data will include a review of concentration units, sample holding times, and the review of duplicate, blank, and other appropriate QA/QC results. Tri-State CCS, LLC will maintain copies of all the laboratory's analytical test results and/or reports. Analytical results will be reported as described in subsection 2.5 of the Testing and Monitoring Plan. In the periodic reports, groundwater analysis data will be presented in graphical and tabular formats as appropriate to characterize general groundwater quality and identify intra-well variability with time. After sufficient data have been collected, additional methods, such as those described in the U.S. EPA 2009 Unified Guidance will be used to evaluate intra-well variations for groundwater constituents, to determine if significant changes have occurred that could be the result of CO₂ or brine seepage beyond the intended storage reservoir.

4.2. Verification and Validation Methods

4.2.1. Data Verification and Validation Processes

See subsections 2.5 and 4.1 for appropriate statistical software that will be utilized to determine data consistency.

4.2.2. Data Verification and Validation Responsibility

Tri-State CCS, LLC or its designated subcontractor will verify and validate groundwater sampling data.

4.2.3. Issue Resolution Process and Responsibility

The Tri-State CCS, LLC Project Manager during pre-operations testing or the Operations Manager during injection and post-injection will oversee the groundwater data handling, management, and assessment process. Staff involved in these processes will consult with the Project Manager or Operations Manager to determine actions required to resolve any issues.

4.2.4. Checklist, Forms, and Calculations

Checklists and forms will be developed specifically to meet permit requirements. These checklists will depend on the parameters that are being tested as well as standard operating procedures of the subcontractors and laboratories that will be gathering the data and conducting the analyses. Tri-State CCS, LLC will provide these forms and checklists to the UIC Program Director upon request. Table 17 provides an example of the type of information that may be used for data verification of groundwater quality data.

Table 17: Example of criteria used to evaluate data quality.

MVA ID	Anion charge	Cation charge	Charge balance	CB rating	Calculated TDS	Measured TDS	TDS Ratio	TDS Rating
ICCS_10B_01A	14.4	13.60	-2.84	pass	760.50	785	1.0	pass

4.3. Reconciliation with User Requirements

4.3.1. Evaluation of Data Uncertainty

Statistical software will be used to determine groundwater data consistency using methods consistent with the U.S. EPA 2009 Unified Guidance.

4.3.2. Data Limitations Reporting

Each vendor or subcontractor's project manager will be responsible for ensuring that data presented by their respective organizations is developed with the appropriate data-use limitations. Tri-State CCS, LLC will ensure that the data-use limitations are known and presented properly.

The remainder of this page intentionally left blank.

5. References

American Public Health Association (APHA), SM2510 (1992). “Standard Methods for the Examination of Water and Wastewater”, APHA-AWWA-WPCF, 18th Edition.

APHA (2005). Standard methods for the examination of water and wastewater (21st edition), American Public Health Association, Washington, DC.

API MPMS (2016). Ch. 14 / AGA Report No. 3: Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids – Concentric, Square-edged Orifice Meters.

ASTM (2005). Method D6452-99 (reapproved 2005), Standard Guide for Purging Methods for Wells Used for Ground-Water Quality Investigations, ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA.

ASTM (2005). Method D6517-00 (reapproved 2005), Standard guide for field preservation of ground-water samples, ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA.

ASTM (2017). Method D6564-00, Standard Guide for Field Filtration of Ground-Water Samples, ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA.

ASTM Standard D513-16. 1988 (2016). “Standard Test Methods for Total and Dissolved Carbon Dioxide in Water,” ASTM International, West Conshohocken, PA. DOI: 10.1520/D0513-16, www.astm.org.

Childs, O. E. (1985). Correlation of Stratigraphic Units of North America--COSUNA. AAPG Bulletin, 69(2), 173-180.

Hach Company. (2006). Hydrolab DS5X, DS5, and MS5 Water Quality Multiprobes User Manual, Hach Co., 73 p.

Jarvinen, E., Keranen, J., and Terasahde, P. (2012). Analysis and Sampling Methods – Post-Combustion CO₂ Capture Process. Ramboll Finland Ltd. TQP ID 1 – 257430179.

Method 2320 B, (1997). Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 21st Edition.

Patchen, D. G., Avary, K. L., and Erwin, R. B. (1985b). Northern Appalachian region, American Association of Petroleum Geologists COSUNA Chart NAP, Tulsa.

Puls, R W, and Barcelona, M J (1996). Ground water issue: Low-flow (minimal drawdown) ground-water sampling procedures. United States.

Resource Conservation and Recovery Act (RCRA), 42 U.S.C. 6901 et seq. (1976)

Riley, R.A., J.L. Wicks & C.J. Perry. (2010). Silurian “Clinton” Sandstone Reservoir Characterization for Evaluation of CO₂ –EOR Potential in the East Canton Oil Field, Ohio, Final Report; Prepared by Baard Energy, L.L.C., under DOE Cooperative Agreement No. DE-NT0005115, 31 p.

The National Association of Corrosion Engineers (NACE) Standard RP0775 (2018). Preparation, Installation, Analysis, And Interpretation of Corrosion Coupons in Oilfield Operations, Houston, TX. ISBN 1-57590-086-6.

U.S. Environmental Protection Agency (US EPA) (1974). Methods for chemical analysis of water and wastes, US EPA Cincinnati, OH, EPa-625-/6-74-003a.

U.S. EPA (2009). Data Quality Assessment: Statistical Methods for Practitioners, US EPA Cincinnati, OH, EPA-QA/G-9S.

U.S. EPA (2009). Statistical analysis of groundwater monitoring data at RCRA facilities—Unified Guidance, US EPA, Office of Solid Waste, Washington, DC.

U.S. EPA, (1994a). “Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma – Mass Spectrometry.” Revision 5.4. Environmental Monitoring Systems Laboratory Office of Research and Development U.S. Environmental Protection Agency, Cincinnati, Ohio.

U.S. EPA, (1994b). “Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma – Atomic Emission Spectrometry.” Revision 4.4. Environmental Monitoring Systems Laboratory Office of Research and Development U.S. Environmental Protection Agency, Cincinnati, Ohio.

U.S. EPA, (2020). “Method 5 – Determination of Particulate Matter Emissions From Stationary Sources.” Washington, DC.

U.S. EPA, (2014a). “Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry.” Revision 2. Washington, DC.

U.S. EPA, (2014b). “Method 6010D (SW-846): Inductively Coupled Plasma-Optical Emission Spectrometry.” Revision 4. Washington, DC.

U.S. EPA. 1971 (1982). “Method 150.1: pH in Water by Electromagnetic Method”, Cincinnati, OH.

U.S. EPA. 1993. “Method 300.0: “Methods for the Determination of Inorganic Substances in Environmental Samples.” Revision 2.1. Washington, DC.

Wickstrom, L. H. et al... (2010). Characterization of geologic sequestration opportunities in the MRCSP region. ODNR Geological Survey.

WVGES. (2019). Generalized stratigraphic chart for West Virginia. West Virginia Geological & Economic Survey.