

Blue Bison ATR Advanced CCUS System

primary project goal

Tallgrass MLP Operations LLC is partnering with the University of Wyoming and Technip Energies to perform an initial engineering design of a commercial-scale carbon capture and storage (CCS) system installed at a hydrogen (H₂) production plant proposed to be installed in Douglas, Wyoming. The proposed plant would produce decarbonized H₂ from natural gas (or “blue” H₂), utilizing Haldor Topsøe’s auto-thermal reforming (ATR) technology coupled with BASF’s OASE® White carbon capture system. The primary project goal is to complete an initial design of a commercial-scale advanced carbon capture, utilization, and storage (CCUS) system that separates, stores, and utilizes more than 100,000 tonnes per year net CO₂ with 90%+ carbon capture efficiency—from an ATR facility producing high-purity H₂ from natural gas—providing a basis for subsequent deployment of CCUS projects of this type.

technical goals

- Design a commercial-scale carbon capture system that could be installed and fully integrated with a 220-million standard cubic feet per day (MMSCFD) blue H₂ facility utilizing ATR technology, producing 99.97% pure H₂ delivery pressure at or above 360 pounds per square inch absolute (psia).
- Establish system capability of meeting CO₂ capture requirements of 95% pure CO₂ with 90%+ capture efficiency, CO₂ delivery pressure at or above 2,215 psia, and a goal for CO₂ transport and storage costs at or below \$10 per tonne.
- Identify potential utilization pathways for CO₂ and H₂.
- Determine levelized cost of hydrogen and cost of carbon capture to help achieve the U.S. Department of Energy’s (DOE) target for carbon-neutral blue H₂ production of less than \$1 per kg.

technical content

The proposed site for the H₂ production plant with integrated capture is adjacent to Tallgrass’ midstream gas processing plant in Douglas, Wyoming (see Figure 1). This location has multiple favorable characteristics:

- Immediate proximity to existing natural gas lines and existing gas processing plant with its infrastructure and utilities.
- Plausible regional market options for blue H₂ utilization in power generation, renewable diesel production, decarbonized ammonia production in the Midwest, and transportation uses.
- Options for CO₂ utilization with storage opportunities within 1 mile of the host site, enhanced oil recovery (EOR) fields in the regions, and the Wyoming CO₂ corridor initiative.

program area:

Point Source Carbon Capture

ending scale:

pre-FEED

application:

Pre-Combustion Industrial PSC

key technology:

Solvents

project focus:

BASF’s OASE® White Carbon Capture System with Natural Gas Reforming

participant:

Tallgrass MLP Operations LLC

project number:

FE0032114

predecessor projects:

N/A

NETL project manager:

Carl Laird

carl.laird@netl.doe.gov

principal investigator:

Jeff Schaefer

Tallgrass MLP Operations LLC

jeff.schaefer@tallgrassenergylp.com

partners:

University of Wyoming;
Technip Energies

start date:

10.01.2021

percent complete:

5%

Figure 1: Proposed project site.

The proposed H₂ production plant would leverage Haldor Topsøe's SynCOR™ ATR technology (see Figure 2). SMR is the most common natural gas reforming technology deployed, but SMR produces CO₂-loaded flue gas requiring post-combustion capture. However, in ATR, most of the CO₂ generated can be efficiently captured from the high-pressure raw synthesis gas (syngas) stream via amine scrubbing. Unlike SMR, ATR requires oxygen input, but for high CO₂ capture rates the ATR approach is preferred to SMR. The SynCOR ATR technology is oxygen-blown, featuring an adiabatic reformer upstream to convert heavy feedstocks to methane and a fired heater to preheat the feed natural gas, and a high-pressure steam byproduct is used to generate power in a steam turbine generator, which can offset the power demand of the air separation unit (ASU) needed for oxygen production.

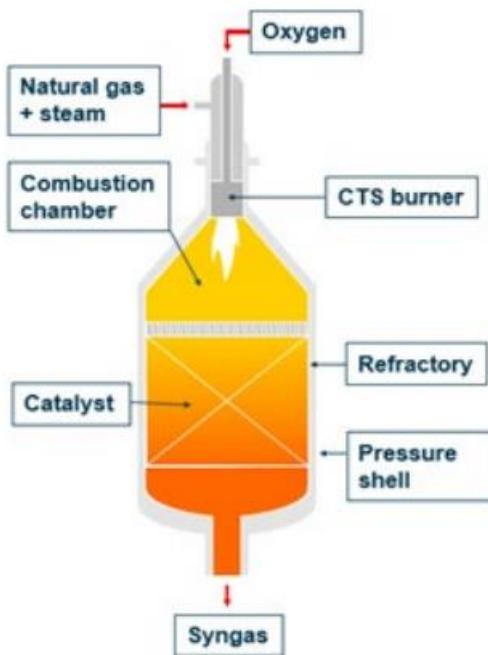


Figure 2: SynCOR™ autothermal reformer.

The integrated H₂ production plant would integrate the autothermal reformer with deep water-gas shift (WGS) and thorough CO₂ capture via BASF's OASE white carbon capture system. The overall process concept for the integrated plant is depicted in Figure 3.

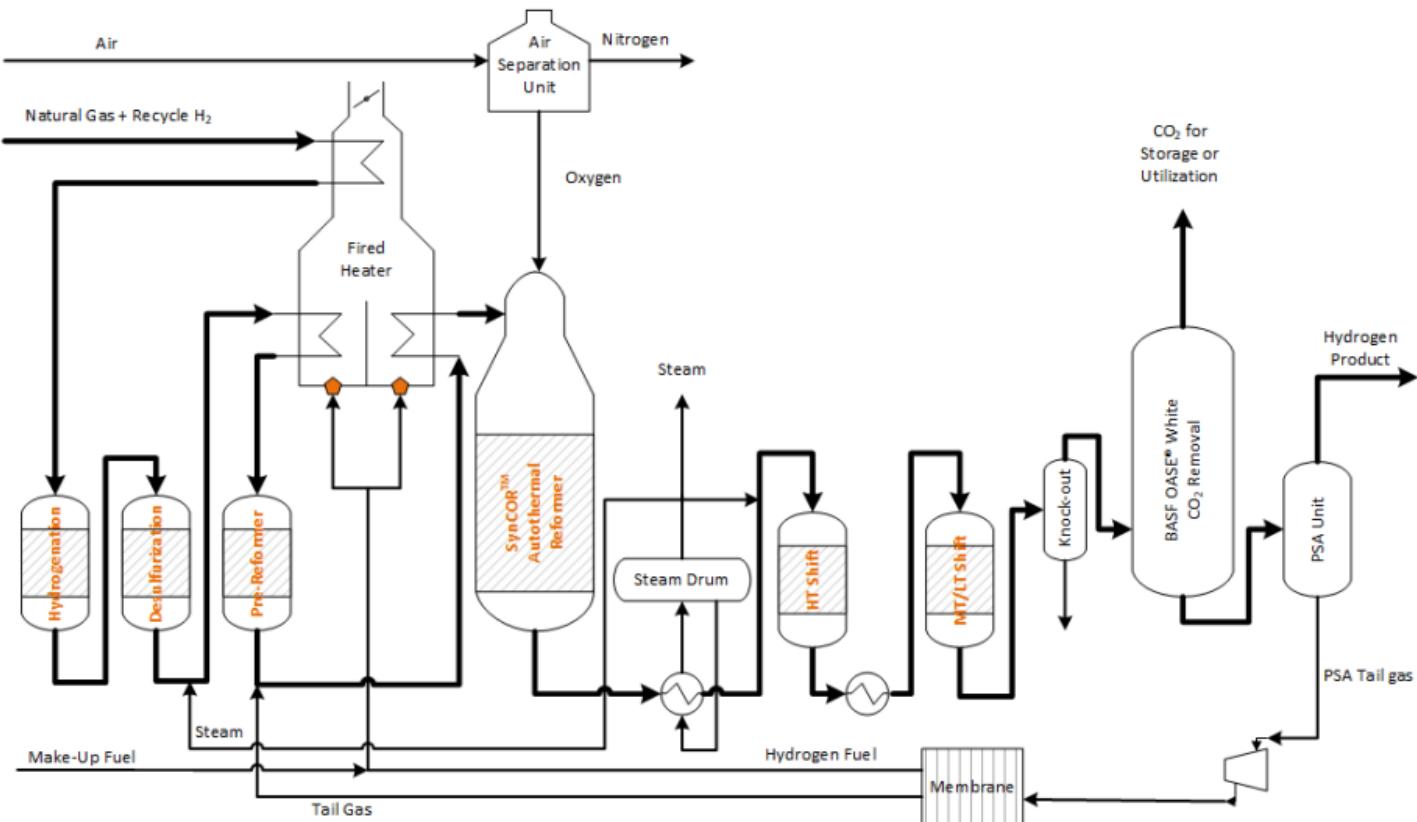


Figure 3: Process concept for integrated ATR with CO₂ capture.

BASF's OASE white is a state-of-the-art amine solvent-based technology for pre-combustion capture of CO₂ from syngas. It is a high-efficiency process, requiring low energy consumption per ton CO₂ captured.

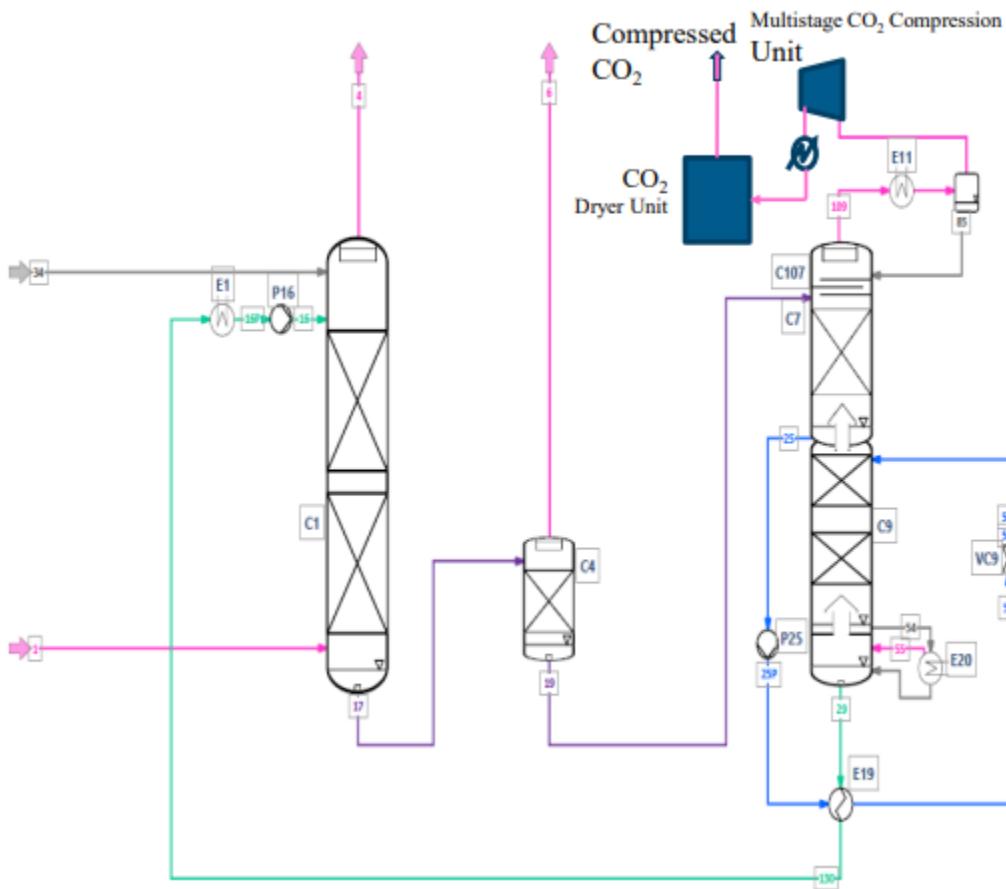


Figure 4: BASF OASE® White carbon capture technology.

***TABLE 1: SOLVENT PROCESS PARAMETERS**

Proposed Module Design	(for equipment developers)			
Syngas Flowrate	kg/hr	219,160		
CO ₂ Recovery, Purity, and Pressure	% / % / bar	99.9	99.57	152
Absorber Pressure Drop	bar		0.2	
Estimated Absorber/Stripper Cost of Manufacturing and Installation	\$ kg/hr		—	

*Numbers presented in this document represent best current information

Other Parameter Descriptions:

Chemical/Physical Solvent Mechanism – Combination of physical and chemical.

Solvent Contaminant Resistance – Currently unknown.

Solvent Foaming Tendency – Currently unknown.

Flue Gas Pretreatment Requirements – Currently unknown.

Solvent Makeup Requirements – Currently unknown.

Waste Streams Generated – Currently unknown.

Process Design Concept – See Figure 3.

Proposed Module Design – See Figure 4. The pressure, temperature and composition of the gas entering the module are as follows:

Pressure	Temperature	Composition entering BASF module							ppmv H ₂ S
		CO ₂	CO	CH ₄	vol%	Ar+N ₂	H ₂	H ₂ O	
378	60	24.7	0.58	0.82	0.49	72.65	0.77	0	

Technology advantages

- State-of-the-art, commercially proven technologies for syngas generation and treatment.

R&D challenges

- Developing a mechanical design for the largest advanced heat exchanger reformer (TPR[®]), which can be integrated with the ATR to reduce O₂ consumption and minimize methane (CH₄) slip from the TPR.
- Verifying test data for use of pure blue H₂ as fuel in LSV[®] burners in the ATR preheater to minimize or eliminate CO₂ production in the fired heater.

status

The project team has developed utility flow diagrams, piping and instrumentation diagrams, and heat and material balances. A 3D model of the system is being generated.

available reports/technical papers/presentations

“Blue Bison DE-FE0032114 Kickoff Meeting,” Kickoff Meeting Presentation, October 19, 2021.

<https://netl.doe.gov/projects/plp-download.aspx?id=11230&filename=Blue+Bison+DE-FE0032114+Kickoff+Meeting.pdf>