

Class VI Injection Well Application
Contains proprietary business information.

Attachment 10: Quality Assurance and Surveillance Plan

Dragon Project
Tazewell County, Illinois

22 November 2024

Project Information

Project Name: Dragon

Project Operator: Vault Dragon CCS LP

Project Contact: Scott Jordan, Project Manager
Vault Dragon CCS LP
1125-17th Street, Suite 1275
Denver, Colorado 80202
Email: dragon@vault4401.com
Phone: 713-930-4401

Dragon Injection Well 1 (DRG INJ1) Location:

Tazewell County, Illinois
Latitude : 40.45742° N
Longitude : 89.74468° W

Table of Contents

1. Title and Approval Sheet	8
2. Distribution.....	9
3. Project Management.....	9
3.1. Project/Task Organization	9
3.1.1. Key Individuals and Responsibilities.....	9
3.1.2. Independence from Project Quality Assurance Manager and Data Gathering	9
3.1.3. Project Quality Assurance Plan Responsibility.....	9
3.2. Problem Definition/Background (A.2.)	10
3.2.1. Reasoning (A.2.a.).....	10
3.2.2. Reasons for Initiating the Project (A.2.b.)	11
3.2.3. Regulatory Information, Applicable Criteria, Action Limits (A.2.c.).....	11
3.3. Project/Task Description (A.3.)	11
3.3.1. Summary of Work to be Performed (A.3.a/b.).....	11
3.3.2. Geographic Locations	17
3.3.3. Resource and Time Constraints (A.3.d.)	18
3.4. Quality Objectives and Criteria (A.4.)	18
3.4.1. Performance/Measurement Criteria (A.4.a.).....	18
3.4.2. Precision (A.4.b.)	24
3.4.3. Bias (A.4.c.)	24
3.4.4. Representativeness (A.4.d.).....	24
3.4.5. Completeness (A.4.e.)	24
3.4.6. Comparability (A.4.f.).....	25
3.4.7. Method Sensitivity (A.4.g.).....	25
3.5. Special Training/Certifications (A.5.).....	27
3.5.1. Specialized Training and Certifications (A.5.a.).....	27
3.5.2. Training Provider and Responsibility (A.5.b/c).....	27
3.6. Documentation and Records (A.6.)	27
3.6.1. Report Format and Package Information (A.6.a.).....	27
3.6.2. Other Project Documents, Records, and Electronic Files (A.6.b.).....	27
3.6.3. Data Storage and Duration (A.6.c/d.).....	27
3.6.4. QASP Distribution Responsibility (A.6.e.).....	28
4. Data Generation and Acquisition (B.).....	28
4.1. Sampling Process Design (B.1.)	28
4.1.1. Design Strategy (B.1.a)	29
4.1.1.1. CO ₂ Stream Monitoring Strategy.....	29
4.1.1.2. Corrosion Monitoring Strategy	29
4.1.1.3. Shallow Groundwater Monitoring Strategy	29
4.1.1.4. Deep Fluid Monitoring Strategy	30
4.1.1.4.1. DRG ACZ1	30
4.1.1.4.2. DRG OBS1 and DRG INJ1	30
4.1.2. Type and Number of Samples/Test Runs (B.1.b.)	30

4.1.3. Site Sampling Locations (B.1.c.)	30
4.1.4. Sampling Site Contingency (B.1.d.)	30
4.1.5. Activity Schedule (B.1.e.).....	30
4.1.6. Critical Informational Data (B.1.f.).....	31
4.1.7. Sources of Variability (B.1.g.)	31
4.2. Sampling Methods (B.2.).....	32
4.2.1. Sampling SOPs (B.2.a/b.)	32
4.2.2. In-situ Monitoring (B.2.c.)	33
4.2.3. Continuous Monitoring (B.2.d.).....	33
4.2.4. Sample Homogenization, Composition, Filtration (B.2.e.).....	33
4.2.5. Sample Containers and Volumes (B.2.f.).....	33
4.2.6. Sample Preservation (B.2.g.).....	33
4.2.7. Cleaning/Decontamination of Sampling Equipment (B.2.h.)	34
4.2.8. Support Facilities (B.2.i.)	35
4.2.9. Corrective Action, Personnel, and Documentation (B.2.j.)	35
4.3. Sample Handling and Custody (B.3.)	35
4.3.1. Maximum Hold Time/Time Before Retrieval (B.3.a.).....	35
4.3.2. Sample Transportation (B.3.b.)	35
4.3.3. Sampling Documentation (B.3.c.).....	36
4.3.4. Sample Identification (B.3.d.).....	36
4.3.5. Sample Chain of Custody (B.3.e.)	36
4.4. Analytical Methods (B.4.).....	36
4.4.1. Analytical SOPs (B.4.a.)	37
4.4.2. Equipment/Instrumentation Needed (B.4.b.)	37
4.4.3. Method Performance Criteria (B.4.c.).....	37
4.4.4. Analytical Failure (B.4.d.).....	37
4.4.5. Sample Disposal (B.4.e.).....	37
4.4.6. Laboratory Turnaround (B.4.f.).....	37
4.4.7. Method Validation for Non-standard Methods (B.4.g.)	37
4.5. QC (B.5.).....	38
4.5.1. QC Activities (B.5.a.).....	38
4.5.1.1. Blanks	38
4.5.1.2. Duplicates	38
4.5.2. Exceeding Control Limits (B.5.b.)	38
4.5.3. Calculating Applicable QC Statistics (B.5.c.).....	39
4.5.3.1. Charge Balance	39
4.5.3.2. Mass Balance	39
4.5.3.3. Outliers.....	39
4.6. Instrument/Equipment Testing, Inspection, and Maintenance (B.6.)	39
4.7. Instrument/Equipment Calibration and Frequency (B.7.).....	40
4.7.1. Calibration and Frequency of Calibration (B.7.a.).....	40
4.7.2. Calibration Methodology (B.7.b.)	40
4.7.3. Calibration Resolution and Documentation (B.7.c.)	40

4.8. Inspection/Acceptance for Supplies and Consumables (B.8.)	41
4.8.1. Supplies, Consumables, and Responsibilities (B.8.a/b.)	41
4.9. Non-direct Measurements (B.9.)	41
4.9.1. Data Sources (B.9.a.)	41
4.9.2. Relevance to Project (B.9.b.)	41
4.9.3. Acceptance Criteria (B.9.c.)	41
4.9.4. Resources/Facilities Needed (B.9.d.)	42
4.9.5. Validity Limits and Operating Conditions (B.9.e.)	42
4.10. Data Management (B.10.)	42
4.10.1. Data Management Scheme (B.10.a.)	42
4.10.2. Recordkeeping and Tracking Practices (B.10.b.)	42
4.10.3. Data Handling Equipment/Procedures (B.10.c.)	42
4.10.4. Responsibility (B.10.d.)	42
4.10.5. Data Archival and Retrieval (B.10.e.)	42
4.10.6. Hardware and Software Configurations (B.10.f.)	43
4.10.7. Checklists and Forms (B.10.g.)	43
5. Assessment and Oversight (C.)	43
5.1. Assessments and Response Actions (C.1.)	43
5.1.1. Activities to be Conducted (C.1.a.)	43
5.1.2. Responsibility for Conducting Assessments (C.1.b.)	43
5.1.3. Assessment Reporting (C.1.c.)	43
5.1.4. Corrective Action (C.1.d.)	43
5.2. Reports to Management (C.2.)	44
5.2.1. QA Status Reports (C.2.a/b.)	44
6. Data Validation and Usability (D.)	44
6.1. Data Review, Verification, and Validation (D.1.)	44
6.1.1. Criteria for Accepting, Rejecting, or Qualifying Data (D.1.a.)	44
6.2. Verification and Validation Methods (D.2.)	44
6.2.1. Data Verification and Validation Processes (D.2.a.)	44
6.2.2. Data Verification and Validation Responsibility (D.2.b.)	45
6.2.3. Issue Resolution Process and Responsibility (D.2.c.)	45
6.2.4. Checklist, Forms and Calculations (D.2.d.)	45
6.3. Reconciliation with User Requirements (D.3.)	45
6.3.1. Evaluation of Data Uncertainty (D.3.a.)	45
6.3.2. Data Limitations Reporting (D.3.b.)	45
7. References	46
Appendix A - Sample Documentation	47
Appendix B - Standard Industry Practices for Calibration	49

List of Figures

Figure 1: PNM INJ1, PNM OBS1, PNM ACZ1, and PNM USDW1 locations.....	17
--	----

List of Tables

Table 1: PBI Summary of testing and monitoring.....	13
Table 2: PBI Instrumentation summary.....	15
Table 3: PBI Geophysical Surveying Summary	16
Table 4: Summary of parameters for fluid samples from shallow and deep groundwater.....	20
Table 5: Summary of potential analytical parameters for CO ₂ stream.	21
Table 6: Summary of analytical parameters for corrosion coupons.	22
Table 7: Summary of measurement parameters for field gauges.	22
Table 8: PBI Actionable testing and monitoring outputs.	23
Table 9: Pressure and temperature downhole gauge specifications.....	25
Table 10: Representative logging tool specifications	26
Table 11: Temperature field probe – flowline, injection tubing.....	26
Table 12: Pressure field probe – flowline, injection tubing.....	26
Table 13: Flow rate field flowmeter – injection tubing	26
Table 14: Stabilization criteria of water quality parameters during shallow well purging.....	32
Table 15: Summary for CO ₂ gas stream analysis.	34
Table 16: Summary for fluid samples.....	34

List of Acronyms and Abbreviations

°C	degrees Celsius
°F	degrees Fahrenheit
µS/cm	micro siemens per centimeter
ACZ	above confining zone
ANSI	American National Standards Institute
AoR	Area of Review
APHA	American Public Health Association
APT	annulus pressure test
ASTM	American Society of Testing and Materials
BHP	bottomhole pressure
CBL	cement bond log
CCS	carbon capture and sequestration
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
CO ₂	carbon dioxide
DIC	dissolved inorganic carbon
DRG ACZ1	Dragon Above Confining Zone Monitoring Well 1
DRG INJ1	Dragon Injection Well 1
DRG OBS1	Dragon Deep Observation Well 1
DRG MA1	Dragon Mahomet Aquifer Monitoring Well 1
EPA	Environmental Protection Agency
HDPE	high density polyethylene
ISBT	International Society of Beverage Technologists
mg/L	milligrams per liter
MIT	mechanical integrity testing
mL	milliliter
N/A	not applicable
PBI	proprietary business information
pH	acidity or alkalinity measurement
PISC	post-injection site care
PNL	pulsed neutron logging
psi	pounds per square inch
QA	quality assurance
QASP	Quality Assurance Surveillance Plan
QC	quality control
RCRA	Resource Conservation and Recovery Act
SCADA	supervisory control and data acquisition
SM	standard method
SOP	standard operating procedure
TBD	to be determined
TDS	total dissolved solids
TOC	total organic carbon
UIC	Underground Injection Control
USDW	underground source of drinking water
VDL	variable density log

1. Title and Approval Sheet

This Quality Assurance and Surveillance Plan (QASP) is approved for use and implementation for the Dragon Project. The signatures below denote the approval of this document and intent to abide by the procedures outlined within it.

Scott Rennie
CEO

Date

Scott Jordan
Project Manager

Date

2. Distribution

The Project Manager will distribute the completed QASP and all future updates for the duration of the project and will be responsible for ensuring that all necessary personnel receive the most current version.

Scott Jordan, Project Manager
Vault Dragon CCS LP
1125-17th Street, Suite 1275
Denver, Colorado 80202
Email: scottj@vault4401.com
Phone: 713-930-4401

3. Project Management

3.1. Project/Task Organization

3.1.1. Key Individuals and Responsibilities

The project operator, Vault Dragon CCS LP, will be responsible for testing and monitoring responsibilities with support from various subcontractors (Attachment 01: Narrative, 2024). Eight subcategories have been identified for the testing and monitoring program with varying responsibilities assigned.

1. Shallow groundwater sampling and monitoring,
2. Deep groundwater sampling and monitoring,
3. Injection well monitoring,
4. Mechanical integrity testing (MIT),
5. Pressure and temperature monitoring,
6. Carbon dioxide (CO₂) stream analysis,
7. CO₂ plume modeling,
8. Seismicity monitoring.

3.1.2. Independence from Project Quality Assurance Manager and Data Gathering

The physical samples to be collected, and the data gathered as a part of the monitoring program will be, on occasion, analyzed, processed, and/or witnessed by third party contractors, independent of the project operator.

3.1.3. Project Quality Assurance Plan Responsibility

Vault Dragon CCS LP will be responsible for maintaining and distributing the official, approved Project QASP. Vault Dragon CCS LP will review the QASP periodically and discuss with the Environmental Protection Agency (EPA) should any changes to the plan be warranted.

3.2. Problem Definition/Background (A.2.)

3.2.1. Reasoning (A.2.a.)

The Dragon Project carbon capture and sequestration (CCS) project has a robust monitoring program, which includes operational, CO₂ plume and pressure front verification, and assurance monitoring components. The QASP covers testing and monitoring activities that will take place during the pre-operational testing phase, 12 year injection phase, and 50 year post injection site care (PISC) phase of the project (Attachment 05: Pre-operational Testing Program, 2024; Attachment 06: Testing and Monitoring, 2024; Attachment 08: Post-injection Site Care and Site Closure, 2024)

Operational monitoring serves to ensure that all procedures and processes associated with the injection operations are safe. Data will be collected to monitor the response of the injection zone and above confining zone (ACZ) intervals by monitoring the following parameters:

- Injection pressure,
- Injection well annulus pressure,
- Mt. Simon Sandstone pressure,
- ACZ monitoring zone pressure (Ironton-Galesville Sandstones).

The operational monitoring includes parameters such as injection zone pressure, injection rate, total volume/mass injected, injection well temperature profile, and passive seismic data and will be collected and evaluated.

The CO₂ plume monitoring component of the program will provide information to evaluate the extent to which the CO₂ plume has spread and whether any leakage of the CO₂ or injection zone fluids through the confining zone has occurred. The primary components of the CO₂ plume monitoring are Pulsed Neutron Logging (PNL) and time-lapse surface seismic data, but additional data will also be gathered from pressure and temperature monitoring and passive seismic monitoring.

The assurance component of the plan monitors for potential CO₂ leakage into the shallow groundwater aquifers or the environment. The primary component of this monitoring consists of fluid sampling and analysis of aqueous geochemistry.

The robust monitoring program developed from this project is based on experience gained from other Class VI projects, as well as extensive geologic evaluation, computational modeling, and understanding of federal regulations. The result of this experience yields a high level of confidence that the Mt. Simon Sandstone is a suitable injection zone, and that the Eau Claire Shale is a sufficient confining zone that will ensure the injected CO₂ will remain permanently in the Mt. Simon Sandstone.

The primary goal of the monitoring program is to continue to demonstrate the activities of this project are safe for the health of the general public and environment. To help facilitate this demonstration, the QASP was developed to ensure the quality of the demonstration methods

meet the requirements of the EPA Underground Injection Control (UIC) Program for Class VI wells.

3.2.2. Reasons for Initiating the Project (A.2.b.)

The purpose of the Dragon Project is to inject and sequester supercritical CO₂ deep in the Mt. Simon Sandstone. This project targets the reduction of CO₂ emissions into the atmosphere from the adjacent ethanol facility. In order to demonstrate the efficacy of this project and the long-term sequestration of CO₂, the rigorous testing and monitoring program presented in Attachment 06: Testing and Monitoring, (2024) will be implemented that covers the pre-operational, injection, and post-injection phases of the project. The QASP presented in this document provides additional information on the methodology and technical standards that will comprise the proposed testing and monitoring program.

3.2.3. Regulatory Information, Applicable Criteria, Action Limits (A.2.c.)

Class VI regulations stipulate that the owners or operators of Class VI well(s) perform several types of activities throughout the life of the project to ensure the following:

- i. That the project well(s) maintain their mechanical integrity,
- ii. That injected fluid migration and pressure changes are within the limits described in the permit application, and
- iii. That underground sources of drinking water (USDWs) are not endangered during or after operations.

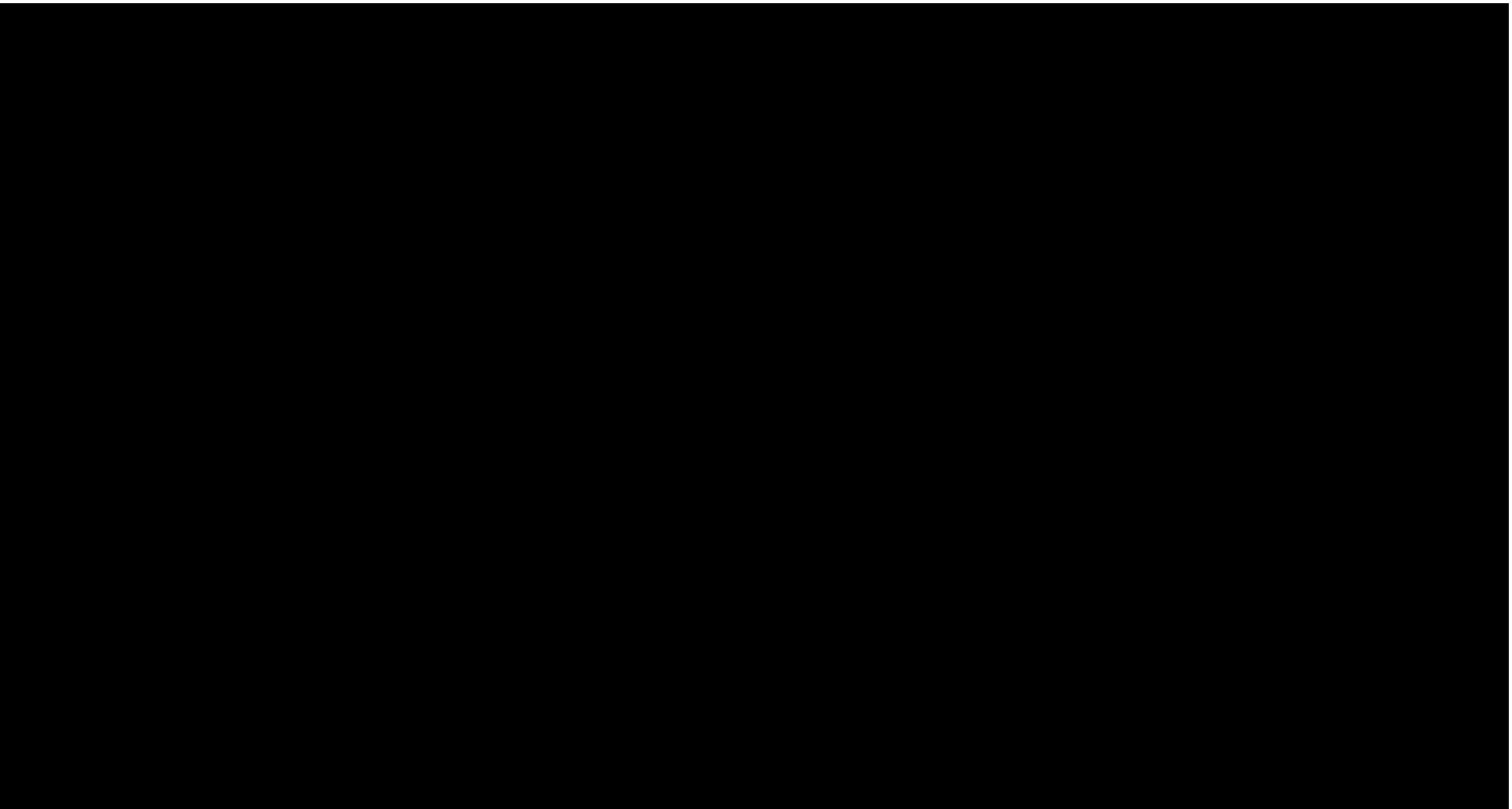
The activities to demonstrate the objectives detailed above consist of, but are not limited to, the following:

- MIT,
- Well tests performed on the injection well during operation,
- Groundwater monitoring from several zones,
- CO₂ and pressure plume tracking,
- Natural and induced seismicity monitoring.

This document is intended to detail the methods of measurement and the steps that will be taken to ensure the quality of the collected data so that confident informed decisions can be made during the project.

3.3. Project/Task Description (A.3.)

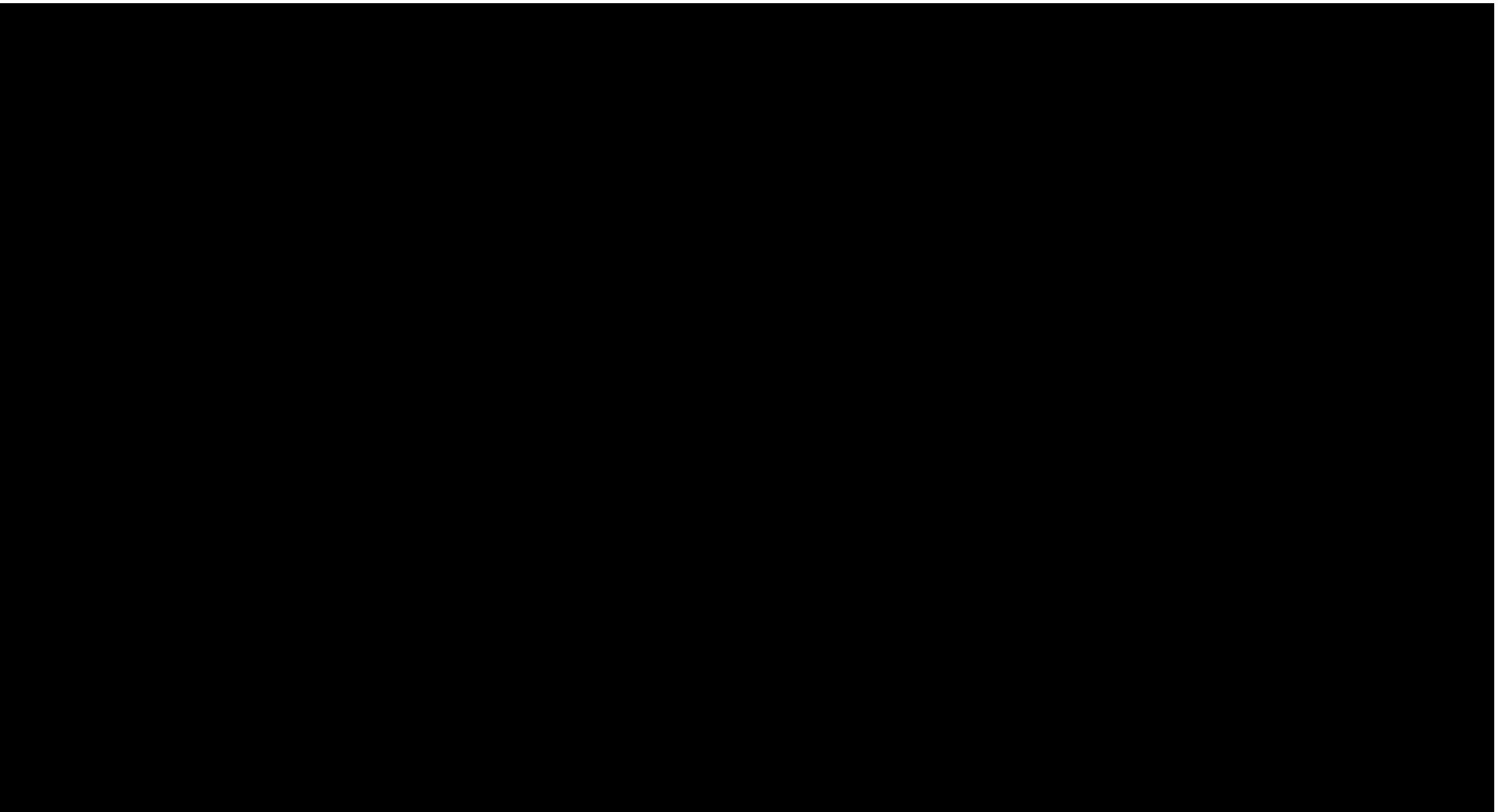
3.3.1. Summary of Work to be Performed (A.3.a/b.)


Table 1 displays the major tasks for the testing and monitoring program as described in Attachment 06: Testing and Monitoring, (2024) and Attachment 08: Post-injection Site Care and Site Closure, (2024). This table displays the location of monitoring points, method of sampling, analytical technique applied, lab/custody procedures to be followed (if applicable), and the

purpose of each item. Details on the frequency of the testing and monitoring program activities can be found in Attachment 05: Pre-operational Testing Program, (2024), Attachment 06: Testing and Monitoring, (2024), and Attachment 08: Post-injection Site Care and Site Closure, (2024).

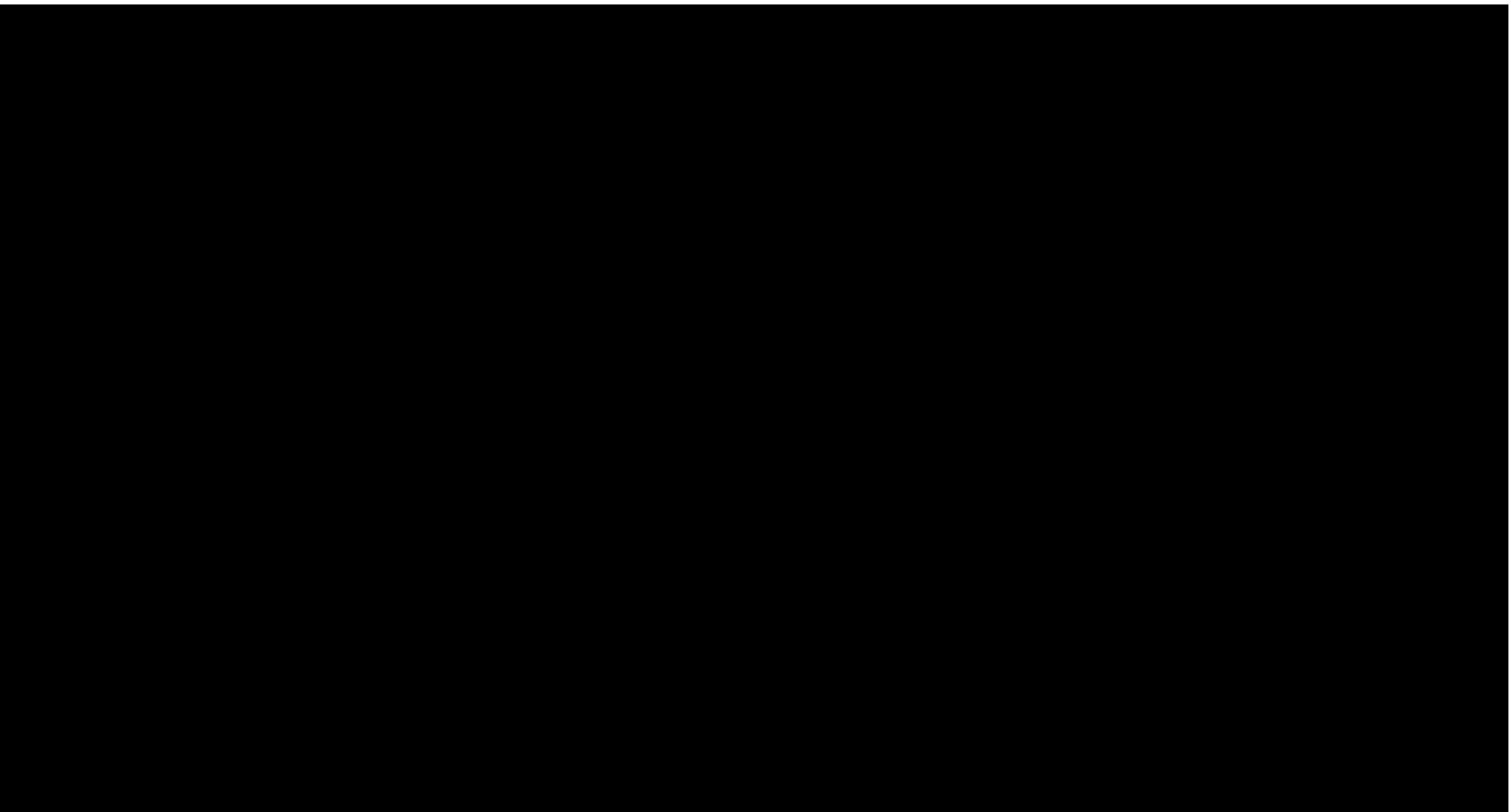
Table 2 and Table 3 display details of the instrumentation used at each monitoring location and geophysical surveys, respectively.

Plan revision number: 1.0


Contains proprietary business information.
Plan revision date: 22 November 2024

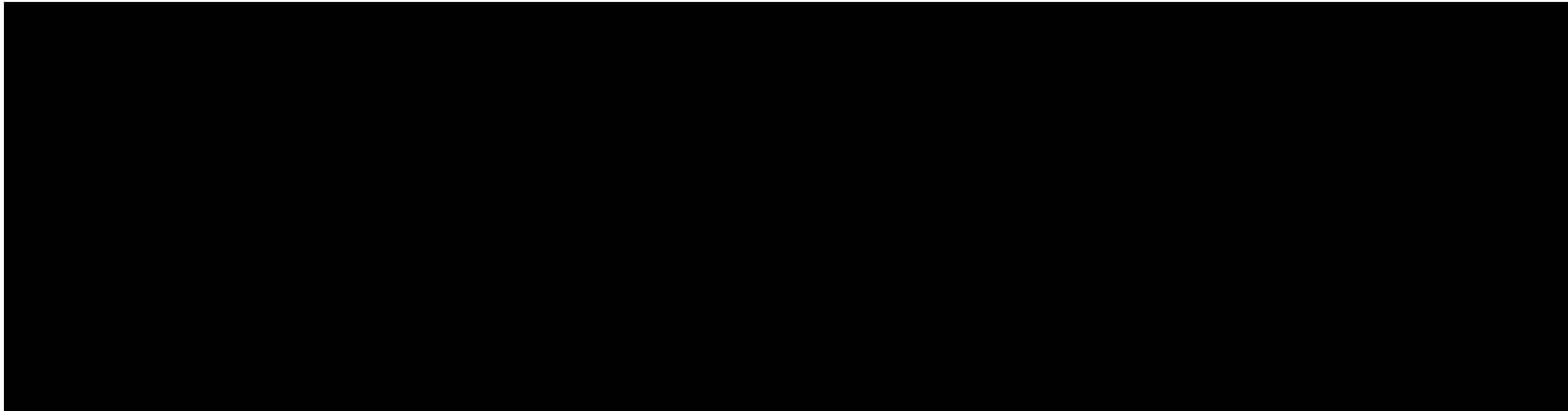
Plan revision number: 1.0

Contains proprietary business information.


Plan revision date: 22 November 2024

Plan revision number: 1.0

Contains proprietary business information.


Plan revision date: 22 November 2024

Plan revision number: 1.0

Contains proprietary business information.

Plan revision date: 22 November 2024

3.3.2. Geographic Locations

Figure 1 shows the locations of the Dragon Project wells.

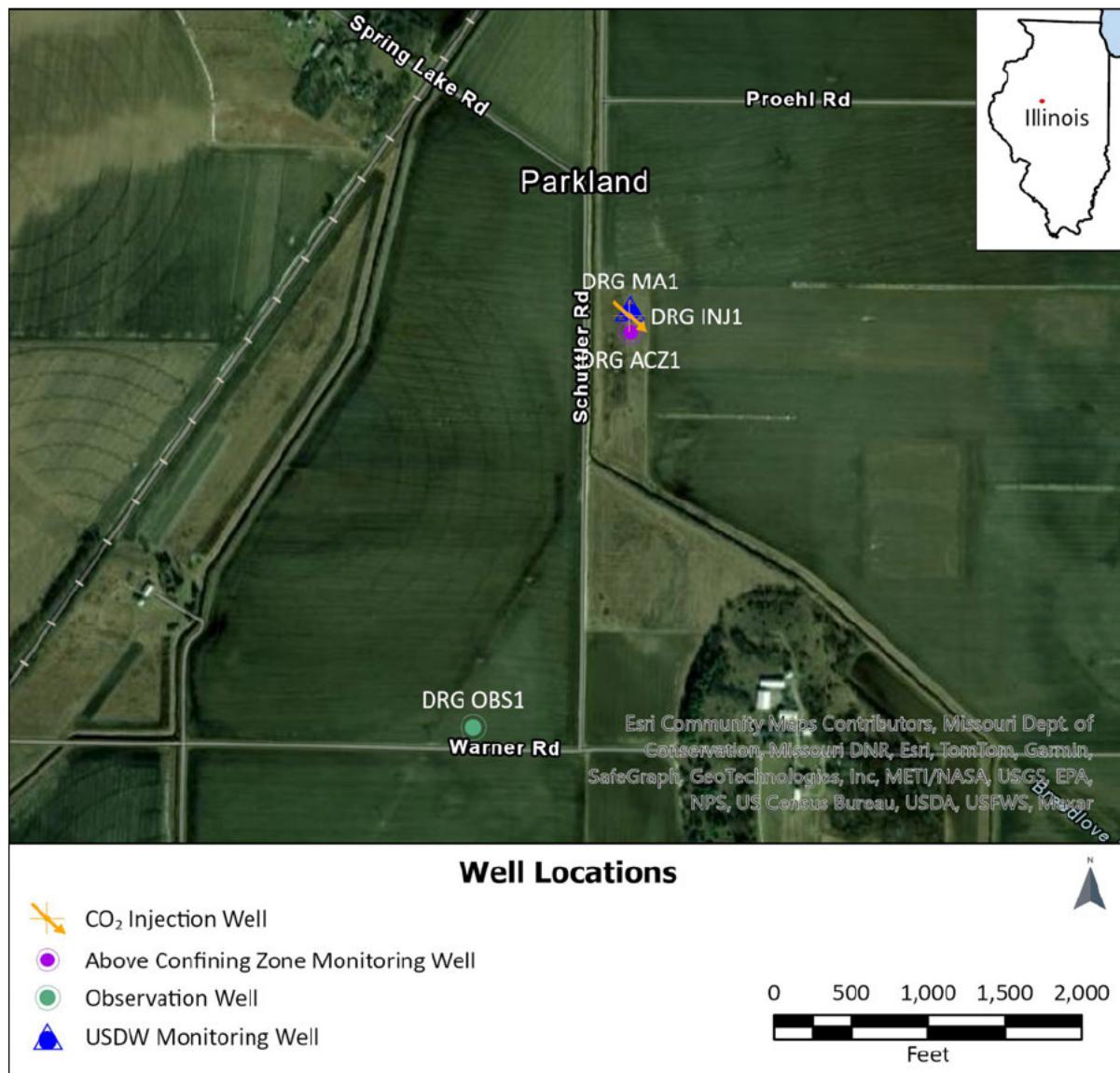


Figure 1: DRG INJ1, DRG OBS1, DRG ACZ1, and DRG MA1 well locations. Map adapted from Esri.

3.3.3. Resource and Time Constraints (A.3.d.)

No major time or resource constraints have been identified for the Dragon Project. Wells drilled, tested, and monitored as laid out in the permit application will serve their purpose for pre-operation, active operations, and post injection closure care.

Following the full closure of the project and the post injection monitoring period, Vault Dragon CCS LP plans to plug and abandon all wells associated with the project in a manner consistent with federal regulations. Shallow groundwater wells used for monitoring but not owned by Vault Dragon CCS LP not be plugged and abandoned. As part of the financial assurance package, money will be allocated to ensure these activities are fully funded (Attachment 03: Financial Assurance Plan, 2024).

3.4. Quality Objectives and Criteria (A.4.)

3.4.1. Performance/Measurement Criteria (A.4.a.)

The objective of the Quality Assurance (QA) system for the monitoring program is to develop and utilize procedures for surface and subsurface monitoring, field samples, laboratory analysis, and routine reporting. The results of these activities will demonstrate the viability, characterization, and non-endangerment of USDWs objectives of the project.

Groundwater monitoring will be conducted:

- Before injection begins,
- During injection operations,
- Post-injection operations.

Specific monitoring frequency and timing is provided in Attachment 06: Testing and Monitoring, (2024), and Attachment 08: Post-injection Site Care and Site Closure, (2024) portions of the application. This monitoring will be performed on shallow and deep groundwater wells.

Analytical and monitoring parameters for fluid samples are provided in Table 4. The list of analytes provided herein may be reassessed periodically and adjusted as necessary based on the effectiveness of the current testing and monitoring program with respect to its objectives.

Table 5 contains analytes that may be analyzed in the CO₂ stream. Table 6 and Table 7 show other CO₂ and injection related parameters, instrumentation, and standards of analysis. Table 8 contains detail on the major monitoring outputs.

Key monitoring areas and corresponding methods and analytes include (but are not limited to):

- i. Shallow groundwater sampling for utilization wells and Dragon Mahomet Aquifer Monitoring Well 1 (DRG MA1) (Table 4).
- ii. Deep fluid sampling for Dragon Above Confining Zone Monitoring Well 1 (DRG ACZ1) (Table 4) and DRG INJ1 (baseline only) (Table 4).
- iii. Well Logging
 - a. PNL.
- iv. Mechanical Integrity Testing and Corrosion Monitoring
 - a. PNL (external),
 - b. Temperature (external),
 - c. Annulus pressure test (APT) (internal, baseline only),
 - d. Cement bond log-variable density log (CBL-VDL) (external),
 - e. Corrosion coupon monitoring (Table 6).
- v. Pressure and Temperature Monitoring
 - a. In-situ pressure/temperature gauges (Table 7),
 - b. Baseline data,
 - c. Surface pressure/temperature gauges.
- vi. CO₂ Stream Analysis (Table 5).
- vii. Geophysical Monitoring
 - a. Time-lapse surface seismic reporting,
 - b. Passive seismic monitoring.

Table 4: Summary of parameters for fluid samples from shallow and deep groundwater. All analysis to be performed by a designated third-party laboratory to be identified.

Parameters	Analytical Methods ¹	Detection Limit/ Range	Typical Precisions	Quality Control Requirements
Cations: Ca, Fe, K, Mg, Na, Si	EPA 6010B	0.005 to 0.5 milligrams per liter (mg/L) ²	±15 percent (%)	Daily calibration, blanks, duplicates, and matrix spikes at 10% or greater
Cations: Al, Sb, As, Ba, Cd, Cr, Cu, Pb, Mn, Hg, Se, Tl	EPA 200.8, EPA 245.1	0.001 to 0.1 mg/L ²	±15%	
Anions: Br, Cl, F, NO ₃ , and SO ₄	EPA 300.0	0.02 to 0.13 mg/L ²	±15%	Daily calibration, blanks, and duplicated at 10% or greater frequency
Alkalinity	Standard method (SM) 2320B	4 mg/L	±3 mg/L	Daily calibration, blanks, and duplicated at 10% or greater frequency
Total dissolved solids (TDS)	SM 2540C	12 mg/L	±10%	Balance calibration, duplicate analysis
Total organic carbon (TOC)	SM 5310C	0.1 mg/L	±10%	Daily calibration, blanks, duplicates, and matrix spikes at 10% or greater
Dissolved inorganic carbon (DIC)	SM 5310C	0.1 mg/L	±10%	Daily calibration, blanks, duplicates, and matrix spikes at 10% or greater
Total and dissolved CO ₂	American Society of Testing and Materials (ASTM) D513-06B	2 mg/L	±15%	Daily calibration, blanks, and duplicated at 10% or greater frequency
Stable isotopes of δ13C ³	Isotope Ratio Mass Spectrometry ⁴	Dependent on selected laboratory	±0.2%	Duplicate analysis and additional quality control (QC) according to selected laboratory
acidity or alkalinity measurement (pH)	Field with multi-probe system	2 to 12 pH units	±0.2 pH units	Calibration per manufacturer specifications
Conductivity/resistivity	Field with multi-probe system	0 to 200 mS/cm	±3% of reading	Calibration per manufacturer specifications
Temperature	Field with multi-probe system	-5 to 50°C	±0.2°C	Calibration per manufacturer specifications

¹ An equivalent method may be employed with the prior approval of the UIC Program Director.

² Analyte, dilution, and matrix dependent

³ Isotope Analysis is contingent

⁴ Gas evolution technique by Atekwana and Krishnamurthy, (1998) with modifications by Hackley et al., (2010)

Table 5: Summary of potential analytical parameters for CO₂ stream. All analysis to be performed a designated third-party laboratory to be identified.

Parameters	Analytical Methods ¹	Detection Limit/Range	Typical Precisions	Quality Control Requirements
CO ₂ purity	International Society of Beverage Technologists (ISBT) 2.0	5 % v/v	±10 % of reading	Calibration per manufacturer specifications
Moisture (H ₂ O)	ISBT 3.0	0-100 ppm v/v	5 to 10% of reading	Daily blank, daily standard within 10% of calibration, secondary standard after calibration
Total hydrocarbons as methane	ISBT 10.0	0.1 ppm v/v as CH ₄	5 to 10% of reading	Daily blank, daily standard within 10% of calibration, secondary standard after calibration
Total non-methane hydrocarbons	ISBT 10.1	0.1 ppm v/v as CH ₄	5 to 10% of reading	Daily blank, daily standard within 10% of calibration, secondary standard after calibration
Carbon monoxide (CO)	ISBT 5.0	0.5 ppm v/v	±20% of reading	Daily blank, daily standard within 10% of calibration, secondary standard after calibration
Oxides of nitrogen (NO _x)	ISBT 7.0	0.5 ppm v/v	±20% of reading	Daily blank, daily standard within 10% of calibration, secondary standard after calibration
<u>Non-condensable gases:</u> Nitrogen (N ₂) Oxygen (O ₂)	ISBT 4.0 ISBT 4.0	4.0 ppm v/v 4.0 ppm v/v	±10% of reading ±10% of reading	Daily blank, daily standard within 10% of calibration, secondary standard after calibration
<u>Volatile hydrocarbons:</u> Methane	ISBT 10.1	0.5 ppm v/v	5 to 10% of reading	Daily blank, daily standard within 10% of calibration, secondary standard after calibration
<u>Volatile sulfur compounds:</u> Hydrogen sulfide (H ₂ S) Sulphur dioxide (SO ₂)	ISBT 14.0 ISBT 14.0	0.02 ppm v/v 0.02 ppm v/v	5 to 10% of reading 5 to 10% of reading	Daily blank, daily standard within 10% of calibration, secondary standard after calibration
<u>Volatile oxygenates:</u> Acetaldehyde (AA) Ethanol	ISBT 11.0 ISBT 11.0	0.05 ppm v/v 0.2 ppm v/v	5 to 10% of reading 5 to 10% of reading	Daily blank, daily standard within 10% of calibration, secondary standard after calibration

¹ An equivalent method may be employed with the prior approval of the UIC Program Director.

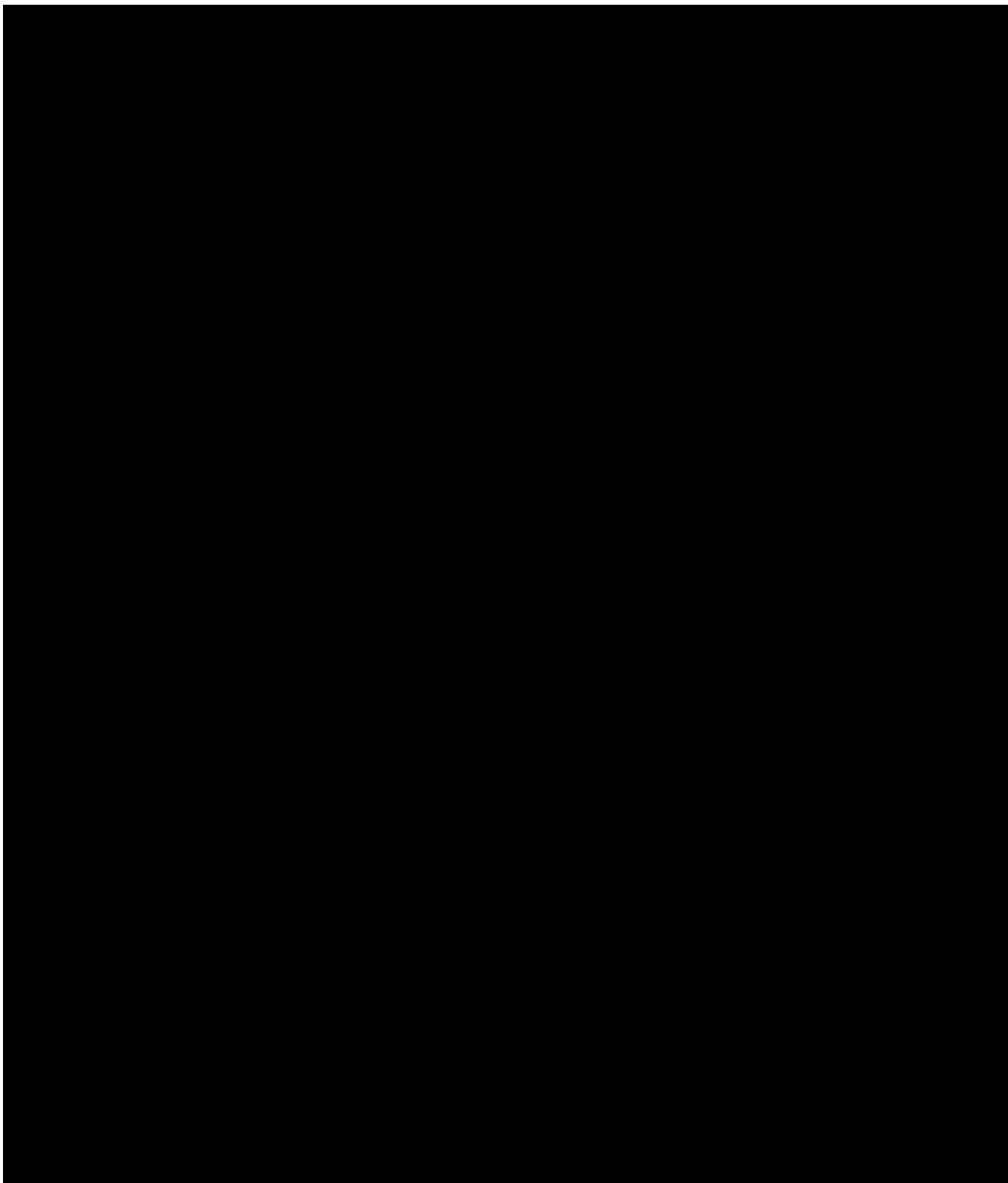
Table 6: Summary of analytical parameters for corrosion coupons.

Parameters	Analytical Methods	Detection Limit/Range	Typical Precisions	QC Requirements
Mass	NACE RP0775-2005	0.005 mg	±2%	Annual third-party calibration of scale (certification number to be provided)
Thickness	NACE RP0775-2005	0.001 mm	±0.005	Factory calibration

Table 7: Summary of measurement parameters for field gauges.

Parameters	Methods ¹	Detection Limit/Range	Typical Accuracy	QC Requirements
Injection tubing temperature	American National Standards Institute (ANSI) Z540-1-1994	±0.001 °F, 0-500 °F	±0.01 °F	Annual third-party calibration of scale (certification number to be provided)
Injection tubing pressure	ANSI Z540-1-1994	±0.001 pounds per square inch (psi), 0-3,000 psi	±0.01 psi	Annual third-party calibration of scale (certification number to be provided)
Injection flow rate	N/A	0-200,000 pounds/hour	< 2%	Annual third-party calibration of scale (certification number to be provided)
DRG INJ1 annulus pressure	ANSI Z540-1-1994	±0.001 psi, 0-3,000 psi	±0.01 psi	Annual third-party calibration of scale (certification number to be provided)
DRG INJ1 downhole pressure	ANSI Z540-1-1994	±0.001 psi, 0-10,000 psi	±0.01 psi	Annual third-party calibration of scale (certification number to be provided)
DRG INJ1 downhole temperature	ANSI Z540-1-1994	±0.001 °F, 0-300 °F	±0.01 °F	Annual third-party calibration of scale (certification number to be provided)
DRG OBS1 wellhead pressure ²	ANSI Z540-1-1994	±0.001 psi, 0-3,000 psi	±0.01 psi	Annual third-party calibration of scale (certification number to be provided)
DRG OBS1 downhole pressure	ANSI Z540-1-1994	±0.001 psi, 0-10,000 psi	±0.01 psi	Annual third-party calibration of scale (certification number to be provided)
DRG ACZ1 wellhead pressure	ANSI Z540-1-1994	±0.001 psi, 0-3,000 psi	±0.01 psi	Annual third-party calibration of scale (certification number to be provided)
DRG ACZ1 downhole pressure	ANSI Z540-1-1994	±0.001 psi, 0-3,000 psi	±0.01 psi	Annual third-party calibration of scale (certification number to be provided)

¹ An equivalent method may be employed with the prior approval of the UIC Program Director.


² Annulus pressure will also be collected using a similar gauge should the well have tubing.

Note: Standards, detection limits/ranges, and precision parameters are subject to change based on the finalization of equipment.

Contains proprietary business information.

Plan revision number: 1.0

Plan revision date: 22 November 2024

3.4.2. Precision (A.4.b.)

For groundwater sampling, data accuracy will be assessed regularly by the collection and analysis of blanks to test procedures and both duplicates and matrix spikes to test lab and sampling procedures. Field blanks will be taken no less than one per sampling event to spot check for sample container contamination. Laboratory assessment of the precision of the analytes will be the responsibility of the laboratory chosen to analyze the field samples based on acceptable operating procedures.

Table 9 presents the specifications and precision information for the downhole pressure and temperature gauges to be used for downhole pressure and temperature monitoring in the injection and above confining zone intervals.

Table 10 presents the parameters and specifications for the logging tools to be used as part of the testing and monitoring plan in the pre-operational, injection, and post injection site care phases of the project (Attachment 05: Pre-operational Testing Program, 2024; Attachment 06: Testing and Monitoring, 2024; Attachment 08: Post-injection Site Care and Site Closure, 2024).

3.4.3. Bias (A.4.c.)

Assessments of the analytical biases present in analysis are the responsibility of the contracted laboratories based on acceptable operating procedures. Assessment of field bias will be assessed through collection of field blanks taken no less than one per sampling event. It is assumed there are no measurement biases for direct temperature, pressure, or logging measurements.

3.4.4. Representativeness (A.4.d.)

For groundwater sampling, data representativeness expresses the degree to which data accurately and precisely represents a characteristic of a sample population, parameter variations at a specific sampling point, a process condition, or an environmental condition. The sampling network laid out in the monitoring program is designed to provide data that is representative of site conditions.

For analytical results of individual groundwater samples, representativeness will be estimated by ion and mass balance determination. Ion balance determinations with $\pm 10\%$ error, or less, will be considered valid. Mass balance determinations will be used in cases where the ion balance is great than the $\pm 10\%$ threshold to attempt to determine the source of the measurement error.

For samples (and their duplicates) if the relative % difference varies by more than 10%, the sample may be considered not representative.

3.4.5. Completeness (A.4.e.)

Data completeness is a measure of the amount of valid data obtained from a measurement point compared to the amount of data that was expected to be obtained from the data point under normal conditions. It is anticipated that 90% data completeness for groundwater samples will be considered acceptable to meet monitoring objectives.

For direct pressure, temperature, and logging measurements, it is anticipated that data will be recorded no less than 90% of the time.

3.4.6. Comparability (A.4.f.)

Data comparability expresses the confidence with which one data set can be compared to others. The data sets generated by this project are anticipated to be comparable to future data sets because of the use of standard methods of measurement and the high levels of quality assurance/quality control (QA/QC) of data.

Historical groundwater quality data will be assessed for their level of quality, and assuming they are of high enough quality, will be used for comparative purposes. Direct pressure, temperature and logging measurements will be directly comparable to previously collected data.

3.4.7. Method Sensitivity (A.4.g.)

Table 9, Table 10, Table 11, Table 12, and Table 13, provide additional information on gauge and sensor sensitivities as well as logging and downhole tool specifications.

Table 9: Pressure and temperature downhole gauge specifications for DRG OBS1/DRG ACZ1/ DRG INJ1.¹

Parameter	Value
Calibrated working pressure range	14.7 to 10,000 psi
Initial pressure accuracy	± 0.015% over full scale
Pressure resolution	0.006 psi/second
Pressure drift stability	0.01% full scale/year
Calibrated working temperature range	to 300°F
Initial temperature accuracy	±0.01 °F
Temperature resolution	0.01 °F/second
Temperature drift stability	0.2% °F/year
Max temperature	300 °F
Instrument calibration frequency	From manufacturer

¹ An equivalent method may be employed with the prior approval of the UIC Program Director.

Table 10: Representative logging tool specifications.¹

Parameter	PNL	CBL	USIT or Equivalent	Temperature Log
Logging speed	1,000 feet/hour	1,800 feet/hour	2,700 feet/hour	900 feet/hour
Investigation Target	Ironton – Galesville, Eau Claire, and Mt. Simon Formations	Formation, casing, cement bond quality	Formation, casing, cement bond quality	Formation
Temperature rating	Up to 350°F	Up to 302°F	Up to 350°F	Up to 302°F
Pressure rating	Up to 15,000 psi	Up to 14,000 psi	Up to 20,000 psi	Up to 14,500 psi

¹ A suitable replacement tool could be used pending tool availability; updated specifications will be provided should such a change occur.

Table 11: Temperature field probe – flowline, injection tubing.¹

Parameter	Value
Calibrated working temperature range	0 to 500°F
Initial temperature accuracy	0.01 °F
Temperature resolution	0.001°F

¹ An equivalent method may be employed with the prior approval of the UIC Program Director.

Table 12: Pressure field probe – flowline, injection tubing, DRG INJ1 annulus, DRG OBS1 wellhead.¹

Parameter	Value
Calibrated working pressure range	0 to 3,000 psi
Initial pressure accuracy	0.01 psi
Pressure resolution	0.001 psi

¹ An equivalent method may be employed with the prior approval of the UIC Program Director.

Table 13: Flow rate field flowmeter – injection tubing.¹

Parameter	Value
Calibrated working flow rate range	0 to 200,000 pound per hour
Initial flow rate accuracy	< 2%
Flow rate resolution	0.001 pounds per hour

¹ An equivalent method may be employed with the prior approval of the UIC Program Director.

3.5. Special Training/Certifications (A.5.)

3.5.1. Specialized Training and Certifications (A.5.a.)

Geophysical surveying equipment and wireline logging tools will be operated by trained, qualified, and certified personnel. This will be verified by the respective contracted service company that provides the equipment and services. The data collected as a result of these activities will be analyzed according to industry standards.

There are currently no special certifications required for personnel to collect groundwater samples. Qualified personnel will still perform these activities. Fluid sampling will be performed by personnel trained to understand and follow the specific and detailed sampling procedures.

If requested, the Dragon Project will provide the EPA with all the laboratory Standard Operating Procedures (SOPs) for the specific parameters for the approved methods. Each laboratory technician conducting analysis on the samples will be trained in these SOPs for the standard method they are using. Technician certifications will be provided with the regular reports.

3.5.2. Training Provider and Responsibility (A.5.b/c)

Training will be provided by the contracted operator or subcontractor responsible for the collection of data.

3.6. Documentation and Records (A.6.)

3.6.1. Report Format and Package Information (A.6.a.)

A report from Vault Dragon CCS LP to EPA will contain all required project data, sampling results, and analytical analysis results. The frequency of this report is defined the Testing and Monitoring section of this application (Attachment 06: Testing and Monitoring, 2024). Data will be provided in digital formats unless otherwise requested.

3.6.2. Other Project Documents, Records, and Electronic Files (A.6.b.)

Other files (i.e., well logs, reports, test results, etc.) will be provided as required by the UIC Program Director and Class VI Permit.

3.6.3. Data Storage and Duration (A.6.c/d.)

Vault Dragon CCS LP will maintain digital copies of all relevant files for the project as stipulated in the Testing and Monitoring and PISC sections of this application (Attachment 06: Testing and Monitoring, 2024; Attachment 08: Post-injection Site Care and Site Closure, 2024).

3.6.4. QASP Distribution Responsibility (A.6.e.)

The Project Manager will be responsible for ensuring that all people listed on the distribution list (to be created once the project commences) receive the current copy of the approved QASP.

4. Data Generation and Acquisition (B.)

4.1. Sampling Process Design (B.1.)

Discussion in this section is focused on fluid sampling, CO₂ stream monitoring, and corrosion monitoring and does not discuss monitoring methods associated with non-physical samples (logging, seismic, pressure/temperature monitoring, etc.).

During the pre-operation, injection, and PISC phases, fluid sampling analysis is planned to include an extensive set of chemical analytes to aid in establishing a quality baseline data set. These analytes will include:

- i. Primary and secondary EPA drinking water maximum contaminant levels,
- ii. Those most responsive to CO₂ or brine contact,
- iii. Those necessary for quality control (QC) and,
- iv. Those which might be necessary for geochemical modeling.

A full set of monitoring parameters is provided in Table 4. After a sufficient baseline dataset is established, the scope of the monitored analyte may shift to a more detailed subset of parameters that are:

- i. The most responsive to interaction with CO₂ or brine contact, and
- ii. Necessary for QC.

Implementation of a reduced set of parameters will be done in conjunction with consultation with the EPA. During a period where a reduced set of analytes is used, should statistically significant trends develop that are presumed to be a result of unintended CO₂ or brine migration, the analytical list will be expanded to the initial, full set of analytical parameters.

All groundwater samples will be analyzed using a laboratory that meets the requirements laid out in the EPA Environmental Laboratory Accreditation Program. Dissolved CO₂ will be analyzed by methods consistent with *Test Method B of ASTM D 513-11e1, “Standard Test Methods for Total and Dissolved Carbon Dioxide in Water”* or a suitable equivalent. Isotopic analyses will be performed in accordance with established methods.

4.1.1. Design Strategy (B.1.a)

4.1.1.1. CO₂ Stream Monitoring Strategy

The primary purpose of analyzing the CO₂ stream is to evaluate the potential interactions of CO₂ and other potential constituents of the injected with formation solids. The analysis performed can also identify or potentially rule out interactions with well materials of construction. Establishing the chemical composition of the injectate will also help to support the determination of whether this injectate meets the qualifications of hazardous waste described under the Resource Conservation and Recovery Act (RCRA) from 1976. In addition to those stipulations laid out in the RCRA, this determination will also be made with respect to the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980.

Additional monitoring of chemical and physical characteristics of the CO₂ may help distinguish the injectate from native brine and gases if potential unintended leakage from the injection zone occurs. Injectate monitoring will occur at such frequency to detect potential changes to any physical or chemical properties that may result in deviation from the permit specifications and baseline data.

Yearly calibration of temperature, pressure, and flowrate probes and transponders meant to monitor the response of the injection of CO₂ into DRG INJ1, will also be conducted annually at DRG OBS1 and DRG ACZ1. Calibration reports will contain information on the test equipment used to calibrate the probes, including equipment manufacturer information, serial numbers, calibration dates, and expiration dates of equipment and calibration. These calibration activities will be performed throughout the injection and PISC phases of the project.

4.1.1.2. Corrosion Monitoring Strategy

Corrosion coupon analysis will be conducted regularly to aid and ensure the mechanical integrity of all equipment that comes in contact with the CO₂ stream. Coupons will be sent regularly to a third-party company for analysis. This analysis will be conducted in accordance with NACE Standard RP-0775, or similar, to determine and document any potential corrosion or wear rates based on mass loss.

4.1.1.3. Shallow Groundwater Monitoring Strategy

Shallow groundwater wells within the Area of Review (AoR) terminate in Quaternary aquifers that include the Mahomet Aquifer. Several local groundwater monitoring wells will be selected for the shallow groundwater monitoring program and one dedicated well will be drilled into the Mahomet Aquifer adjacent to the injection well and will be sampled on a regular basis. These wells are intended to monitor currently used aquifers in the area.

Further details on these wells and routine sampling are provided in Attachment 02: AoR and Corrective Action Plan, (2024), Attachment 06: Testing and Monitoring, (2024), and Attachment 08: Post-injection Site Care and Site Closure, (2024).

4.1.1.4. Deep Fluid Monitoring Strategy

4.1.1.4.1. DRG ACZ1

One dedicated above confining zone monitoring well (DRG ACZ1) will also be installed near the injection well. DRG ACZ1 will be installed and completed within the Ironton-Galesville Sandstones above the confining zone and will serve as an early leakage detection point at or near the injection well.

With the planned sampling methods and outline frequency, it is expected that baseline conditions can be documented, any natural variability in the conditions can be characterized, and that unintended brine or CO₂ leakage will be detected quickly if it occurs. Sufficient data will be collected from this well to demonstrate that the effects of CO₂ injection are limited to the intended injection zone.

4.1.1.4.2. DRG OBS1 and DRG INJ1

Fluid samples will be collected from the injection well as part of the pre-operational testing program. Once injection begins, no further fluid samples will be collected.

4.1.2. Type and Number of Samples/Test Runs (B.1.b.)

Table 1 contains a listing of the type of samples that will be run and collected from each of the wells mentioned previously. Sampling frequencies and occurrences are detailed in Attachment 05: Pre-operational Testing Program, (2024), Attachment 06: Testing and Monitoring, (2024), and Attachment 08: Post-injection Site Care and Site Closure, (2024) sections of the permit application.

4.1.3. Site Sampling Locations (B.1.c.)

Fluid sampling locations are shown in Figure 1 and listed in Table 1. Specific analytes for fluid sampling are provided in Table 4.

4.1.4. Sampling Site Contingency (B.1.d.)

Locations of off-site sampling and monitoring points for the utilization wells have not been finalized. However, it is currently anticipated that no site access issues will occur. If weather makes well access difficult, sampling schedules will be adjusted as necessary to ensure that access and proper sampling may occur. The EPA will be notified of any changes to the sampling schedule.

4.1.5. Activity Schedule (B.1.e.)

Sampling frequencies and occurrences are detailed in the pre-operational testing plan, the testing and monitoring plan, and the PISC plan sections of the permit application (Attachment 05: Pre-operational Testing Program, 2024; Attachment 06: Testing and Monitoring, 2024; Attachment 08: Post-injection Site Care and Site Closure, 2024).

4.1.6. Critical Informational Data (B.1.f.)

Detailed documentation from field and laboratory activities will be taken during groundwater sampling and analytical work. Important documentation to be collected during these times are as follows:

- Time and date of activity,
- Person(s) performing activity,
- Location of activity,
- Equipment calibration data, and
- Field parameter values.

During laboratory analysis much of the above-listed critical data are generated during the analysis and provided as part of the typical output reports from analysis. Additional noncritical data may be collected. This data may include appearance and odor of sample, problems with well or any sampling equipment, and any weather conditions which may impact sampling.

4.1.7. Sources of Variability (B.1.g.)

Potential sources of variability related to the aforementioned monitoring activities include:

- Natural variation in fluid quality, formation pressure and temperature, and seismic activity,
- Variation in fluid quality, formation pressure and temperature, and seismic activity due to injection operations,
- Changes in aquifer recharge due to rainfall, drought, or snowfall,
- Changes in instrument calibration during sampling or analytical activities,
- Changes in collection staff or analytical staff,
- Differences in environmental conditions during field sampling activities,
- Changes in analytical data quality during the life of the project, and
- Data entry errors related to maintaining a project database.

Activities that may serve to limit, reduce, or reconcile some of these sources of variability related to monitoring activities include:

- Collection of baseline data to observe and document natural variation in monitoring parameters,
- Evaluation of data and a timely manner after collection such that anomalies in the data can be observed and addressed and re sampling or reanalysis may occur,
- Statistical analysis of the data collected data to determine whether variability and data set is a result of project activities or natural variation (i.e., determining if variation is biased or statistically significant),

- Maintenance of a database of weather-related data using on site and regional weather monitoring data or data collected from other near location sources,
- Instrument calibration before during and after sampling or analysis,
- Thoroughly training all staff to the standards that were detailed in Sections 3.5.1 *Specialized Training and Certifications* and 3.5.2 *Training Provider and Responsibility*,
- Routine quality assurance checks using third party reference materials and/or blind and or duplicate sample checks, and
- Development of a systematic review process of data that can include site and sample specific data quality checks.

4.2. Sampling Methods (B.2.)

Logging, geophysical monitoring, and pressure and temperature monitoring do not apply to this section and are, therefore, omitted.

4.2.1. Sampling SOPs (B.2.a/b.)

Shallow groundwater and fluid samples will be collected primarily using a low-flow sampling method that is consistent with ASTM D6452-99, (2018) or Puls and Barcelona, (1996). This method intends for a flow through cell to be used. Should a flow through cell not be used, field parameters will be measured from grab samples. All groundwater wells will be purged to ensure samples are representative of formation water quality. Static water levels in each well will be determined using an electronic water level indicator before any purging or sampling activities occur.

The groundwater pH, temperature, specific conductance, and dissolved oxygen will be monitored in the field using portable probes and a flow through cell consistent with standard methods given sufficient flow rates and volumes. Field chemistry probes will be calibrated at the beginning of each sampling day according to the given equipment manufacturer's procedures and will use standard reference solutions.

When a flow through cell is used, field parameters will be continuously monitored and will be considered stable when three successive measurements made three minutes apart meet the criteria listed in Table 14.

Table 14: Stabilization criteria of water quality parameters during shallow well purging.

Field Parameter	Stabilization Criteria
pH	± 0.2 units
Temperature	$\pm 1^{\circ}\text{C}$
Specific conductance	$\pm 3\%$ of reading in micro siemens per centimeter ($\mu\text{S}/\text{cm}$)
Dissolved oxygen	$\pm 10\%$ of reading or 0.3 mg/L, whichever is greater

After field parameters are stabilized as per the above table, samples will be collected. Samples will be filtered through 0.45 µm through filter cartridges as appropriate and consistent with ASTM D6564-00, (2005), or suitable alternative.

Prior to sample collection, filters will be purged with a minimum of 100 milliliters (mL) of well water or more if required by the filter manufacturer. Methods such as air lifts or submersible pumps may be used to help purge fluid from the wells. For alkalinity and total CO₂ sampling, reasonable effort will be made to minimize exposure to atmospheric conditions during filtration, collection in sample containers, and analysis.

For deep fluid sampling, a wireline conveyed system with a sampling device capable of collecting downhole samples from discrete intervals will be utilized. Prior to sampling, any zones from these wells will be purged to ensure that stabilized criteria are met before taking representative samples. Standard methods to develop these wells will be used such as down hole submersible pumps or swabbing. The representative sample taken after the stabilization criteria have been met may be small relative to the total amount of fluid purged from the wells.

4.2.2. In-situ Monitoring (B.2.c.)

In-situ monitoring of aqueous geochemistry and analytes is not currently planned.

4.2.3. Continuous Monitoring (B.2.d.)

Continuous monitoring will be conducted at DRG INJ1, DRG OBS1, and DRG ACZ1 as described in Table 1. No continuous pressure monitoring is anticipated or planned at any of the groundwater monitoring wells.

4.2.4. Sample Homogenization, Composition, Filtration (B.2.e.)

Information on the sampling, homogenization, composition, and filtration are provided in Section 4.1 *Sampling Process Design*.

4.2.5. Sample Containers and Volumes (B.2.f.)

For CO₂ stream monitoring, samples will be collected using clean sample containers rated appropriately for sample collection pressure. To ensure a clean sample is taken, the collection cylinder(s) will be purged at least five times (with the sample gas) prior to sample collection. Information for the regular CO₂ gas analysis is provided in Table 5.

For shallow and deep groundwater samples, all sample bottles will be new sample bottles and bags. A summary of sample containers for use are presented in Table 15 and Table 16.

4.2.6. Sample Preservation (B.2.g.)

At this time, preservation of CO₂ gas stream samples is not currently anticipated; however, the details of the sampling requirements, if required, are shown in Table 15. Corrosion coupon sampling only requires that the coupons be physically separated during transportation to prevent

physical abrasion. For all fluid samples, the preservation methods listed in Table 16 will be used.

Table 15: Summary of sample containers, preservation treatments, and holding times for CO₂ gas stream analysis.

Sample	Volume/Container Material	Preservation Technique	Sample Holding time (max)
CO ₂ gas stream	75 cm ³ mini gas cylinder 2-liter (L) multi-layer barrier polybags	Sample storage cabinets	five business days

Table 16: Summary of anticipated sample containers, preservation treatments, and holding times for fluid samples.

Parameters	Lab Method	Type of Container	Preservation Technique	Sample Holding Time
Cations: Ca, Fe, K, Mg, Na, Si	EPA 6010B	High density polyethylene (HDPE) 250 mL	Nitric acid, cool 4 °C	60 days
Cations: Al, Sb, As, Ba, Cd, Cr, Cu, Pb, Mn, Se, Tl	EPA 200.8	HDPE 250 mL	Nitric acid, cool 4 °C	60 days
Cations: Hg	EPA 245.1	HDPE 250 mL	Nitric acid, cool 4 °C	4 weeks
Anions: Br, Cl, F, NO ₃ , and SO ₄	EPA 300.0	HDPE 250 mL	Filtered, cool 4 °C	14 days except NO ₃ 48 hours
Alkalinity	SM 2320B	HDPE 250 mL	Filtered, cool 4 °C	14 days
TDS	SM 2540C	HDPE 250 mL	Filtered, cool 4 °C	7 days
TOC	SM 5310C	Glass amber 500 mL	Sulfuric acid, cool 4 °C	4 weeks
DIC	SM 5310C	Glass amber 500 mL	Filtered, sulfuric acid, cool 4 °C	4 weeks
Total and Dissolved CO ₂	ASTM D513-06B	Glass 40 mL vials	Base preservative, cool 4 °C	14 days
Stable Isotopes of δ13C	Isotope ratio mass spectrometry	HDPE 250 mL	0.5 micron filtered, cool 4 °C	14 days

4.2.7. Cleaning/Decontamination of Sampling Equipment (B.2.h.)

Any water pumps used that are not installed downhole will be cleaned on the outside with a non-phosphate detergent. Pumps will be rinsed a minimum of three times with deionized water. A minimum of 1 L of deionized water will then be pumped through the pump and sample tubing.

Once all pumps in their associated tubing are clean, they will be placed in plastic storage bags and transported for installation. All glassware to be used in the field will be cleaned first with tap water to remove any loose dirt, then washed in a diluted nitric acid solution, and finally rinsed with deionized water before use.

Gas stream sampling containers will be disposed of or decontaminated by the analytical lab. No sampling equipment will be utilized with the corrosion coupons or annual field calibrations.

4.2.8. Support Facilities (B.2.i.)

To conduct proper groundwater sampling the following equipment are required:

- Air compressor
- Vacuum pump
- Generator
- Multi-electrode water quality measurement tool
- Analytical meters

Sampling tubes, connections, and valves required to sample the gas stream will be supplied by the analytical lab.

Corrosion coupons will also be removed from the injection line.

4.2.9. Corrective Action, Personnel, and Documentation (B.2.j.)

Field staff are responsible for ensuring that all equipment is properly functioning. Corrective action will be performed on broken or malfunctioning equipment in the field as necessary. If corrective action cannot be taken in the field, the equipment will be uninstalled and returned to the manufacturer for repair or replacement. Any significant corrective actions that are required will be documented.

4.3. Sample Handling and Custody (B.3.)

Logging, geophysical monitoring, and pressure and temperature monitoring do not apply to this section and is, therefore, omitted.

Sample holding times provided in Table 15 and Table 16 will be consistent with those described by the International Society of Beverage Technologists (ISBT) standards, (International Society of Beverage Technologists, 2021) EPA guidelines and ASTM methods. After collection, fluid samples will be placed in an ice chest in the field, which will be maintained thereafter to approximately 4°C until analysis can be performed. These samples will be maintained at this preservation temperature and sent to their designated laboratory within 24 hours of collection and storage. Analysis of the samples will be completed within the holding time listed in Table 16. As appropriate, alternative sample containers and preservation techniques approved by the UIC program director may be used to meet analytical requirements.

4.3.1. Maximum Hold Time/Time Before Retrieval (B.3.a.)

See Table 15 and Table 16 for maximum hold times for different samples.

4.3.2. Sample Transportation (B.3.b.)

See the beginning of Section 4.3 *Sample Handling and Custody* for sample transportation details and standards.

4.3.3. Sampling Documentation (B.3.c.)

Field notes will be collected for all groundwater samples that are collected. These forms and notes will be retained in archived and the reference sample documentation is the responsibility of the groundwater sampling personnel.

An analytical authorization form will be provided for each gas stream sample provided for analysis as shown by the example in Appendix A. This example and other examples of sample documentation will be supplied in Appendix A at a later date after vendor selection.

4.3.4. Sample Identification (B.3.d.)

All sample bottles will have waterproof labels with the following information:

- Project name,
- Sampling date,
- Sampling location,
- Sampling, identification number,
- Sample type,
- Analyte,
- Volume,
- Filtration used, and
- Preservative used.

Appendix A includes examples of sample documentation including an example of such a label for a sample bottle.

4.3.5. Sample Chain of Custody (B.3.e.)

For gas stream analysis, an analysis authorization form provided (Appendix A) will accompany the sample to the lab, at which point this chain of custody form accompanies the sample throughout the analytical process.

For fluid samples chain of custody will be documented using a standard form, an example of which is shown in Appendix A. Copies of the form will be provided to the person or lab receiving the samples, as well as the person or lab transferring the samples. These forms will be retained and archived to allow simplified tracking of sample status. The chain of custody form and record keeping is the responsibility of the fluid sampling personnel, and all lab personnel involved in analysis.

4.4. Analytical Methods (B.4.)

Logging, geophysical monitoring, and pressure and temperature monitoring do not apply to this section and is, therefore, omitted.

4.4.1. Analytical SOPs (B.4.a.)

Analytical SOPs and their critical parameters are referenced in Table 4. Other laboratory specific SOPs utilized by the contracted laboratories will be determined after such laboratory has been selected.

Upon request, Vault Dragon CCS LP will provide the agency with all laboratory SOPs developed for the specific parameters, using the appropriate standardized method. Each laboratory technician conducting the analysis on these samples will be trained on the SOPs developed for each standardized method. Vault Dragon CCS LP will include the technicians training certification(s) with the regular reports.

4.4.2. Equipment/Instrumentation Needed (B.4.b.)

Any equipment and instrumentation that is needed is specified in the individual analytical methods which are referenced in Table 4 and Table 5.

4.4.3. Method Performance Criteria (B.4.c.)

It is not anticipated that any non-standard method of performance criteria will be necessary for this project.

4.4.4. Analytical Failure (B.4.d.)

Each contracted laboratory conducting the analysis laid out in Table 4 and Table 5 will be responsible for appropriately addressing any analytical failures according to their individual SOPs.

4.4.5. Sample Disposal (B.4.e.)

Each contracted laboratory conducting the analysis laid out in Table 4 and Table 5 will be responsible for appropriate sample disposal according to their individual SOPs.

4.4.6. Laboratory Turnaround (B.4.f.)

Turnaround time will vary by laboratory. It is generally anticipated that the turnaround time of verified analytical results will be received within one month for project needs.

4.4.7. Method Validation for Non-standard Methods (B.4.g.)

It is not anticipated that any nonstandard methods of validation will be necessary for this project. Should this change in the future, the EPA will be consulted on additional appropriate actions to be taken.

4.5. QC (B.5.)

Geophysical monitoring and pressure and temperature monitoring do not apply to this section and are, therefore, omitted. For logging QC, please reference Appendix B, which includes standard industry practices. Specific logging QC information will be supplied at a later date after vendor selection.

4.5.1. QC Activities (B.5.a.)

4.5.1.1. *Blanks*

For shallow groundwater sampling, a field blank will be collected and analyzed for the inorganic analytes detailed in Table 4 at a frequency of 10% or greater. It is noted that field blanks will be exposed to the same field and transportation conditions as the groundwater samples described in Section 4.4 *Analytical Methods*. Blanks will also be utilized for deep fluid sampling and analyzed for the same inorganic analytes detailed in Table 4 at a frequency of 10% or greater. Field blanks will be used to detect contamination, resulting from the collection and transportation processes.

4.5.1.2. *Duplicates*

For shallow groundwater sampling, a duplicate groundwater sample will be collected from a well on a rotating schedule. Duplicate samples are collected from the same source immediately after the original sample is taken. These samples will be kept in different storage containers and process the same as other samples. Duplicate samples are used to assess sample heterogeneity and analytical precision.

4.5.2. Exceeding Control Limits (B.5.b.)

If the analytical results exceed control limits, further examination of the analytical results will be done by evaluating the ratio of the measured total dissolved solids (TDS) count to the calculated TDS count per the American Public Health Association (APHA) method.

This method indicates which ion analysis should be considered suspect based on the mass balance ratio. Suspect ion analyses are then reviewed in the context of historical data and interlaboratory results if available. Suspect ion analyses are then brought to the attention of the analytical laboratory for confirmation and/or reanalysis. The ion balance is then recalculated and if the error is still not resolved, suspect data are identified and may be given less importance and data interpretation.

4.5.3. Calculating Applicable QC Statistics (B.5.c.)

4.5.3.1. Charge Balance

The analytical results are evaluated to determine the correctness of the applied analysis based on anion-cation charge balance calculation. Due to the fact that potable waters are electrically neutral, the chemical analysis should yield equally negative and positive ionic activity.

The anion-cation charge balance is calculated using the following formula:

$$\% \text{ difference} = 100 \frac{\sum \text{cations} - \sum \text{anions}}{\sum \text{cations} + \sum \text{anions}} \quad (1)$$

Wherein the sums of the ions are represented in milliequivalents (meq) per L and the criteria for acceptable charge balance is $\pm 10\%$.

4.5.3.2. Mass Balance

The ratio of the measured TDS to the calculated TDS will be calculated in instances where the charge balance acceptance criteria are exceeded using the following formula:

$$1.0 < \frac{\text{measured TDS}}{\text{calculated TDS}} < 1.2 \quad (2)$$

Wherein the anticipated values are between 1.0 and 1.2.

4.5.3.3. Outliers

It is essential to determine the presence of any statistical outliers when performing evaluation and analytical analysis of groundwater. This project will utilize the EPA's guidance (EPA, 2009) as the basis for selection of recommended statistical methods to identify outliers and groundwater chemistry datasets as appropriate. The techniques detailed in this documentation include:

- Probability plots,
- Box plots,
- Dixon's test,
- Rosner's test.

4.6. Instrument/Equipment Testing, Inspection, and Maintenance (B.6.)

Logging tool equipment will be maintained and cared for, as is detailed in the wireline industry best practices provided in Appendix B.

Groundwater and fluid sampling field equipment will be maintained, serviced, and calibrated as per manufacturer's recommendation. Spare parts that may be needed during sampling will be included and supplied during field sampling.

The contracted laboratories will be responsible for providing all testing, inspection, and maintenance of all laboratory equipment used for analytical purposes. Standard practice and method specific control should be followed during these activities.

4.7. Instrument/Equipment Calibration and Frequency (B.7.)

Geophysical monitoring does not apply to this section and is, therefore, omitted.

4.7.1. Calibration and Frequency of Calibration (B.7.a.)

Pressure and temperature gauges as well as flowmeter information is provided in Table 9, Table 10, Table 11, Table 12, and Table 13.

Logging tool calibration will be the responsibility of the contracted service company providing the equipment, following standard industry practices.

For fluid sampling, the portable field meters or multiprobe sondes that will be used to determine field parameters are calibrated according to manufacturer recommendations and equipment manuals each day before sampling begins. Recalibration will be performed if any components yield atypical values or fail to stabilize during sampling.

4.7.2. Calibration Methodology (B.7.b.)

Logging tool calibration methods will follow standard industry practices as will be outlined in Appendix B, which will be provided at a later date.

For fluid sampling, the standards for calibration are typically as follows:

- For pH -7 to 10
- For specific conductance - potassium chloride solution yielding a value of 1,413 $\mu\text{S}/\text{cm}$ at 25 °C
- For dissolved oxygen - a 100% dissolved O₂ solution

Calibration is performed for the pH meters per manufacturer specification.

Coulometry instrumentation will be routinely evaluated using sodium carbonate standards.

4.7.3. Calibration Resolution and Documentation (B.7.c.)

Logging tools, calibration, resolution, and documentation will follow the standard industry practice will be shown in Appendix B, which will be provided at a later date.

For fluid sampling tools, calibration values will be noted in daily sampling recordings, as well as errors in calibration, should there be any. For parameters where calibration is not acceptable, redundant equipment may be used to ensure that any potential loss of data is minimized.

4.8. Inspection/Acceptance for Supplies and Consumables (B.8.)

4.8.1. Supplies, Consumables, and Responsibilities (B.8.a/b.)

As required by approved vendors, supplies and consumables for field and laboratory operations will be procured, inspected, and accepted as appropriate. Acquisition of such supplies and consumables related to groundwater analysis will be the responsibility of each laboratory per the established method or operating procedures.

4.9. Non-direct Measurements (B.9.)

Vault Dragon CCS LP will employ time-lapse surface seismic surveys and passive seismic monitoring as non-direct methods to track the extent of the CO₂ plume and pressure front.

4.9.1. Data Sources (B.9.a.)

For time-lapse surface seismic surveys, repeatability is paramount for accurate differential comparison. To ensure survey quality, the locations for the surface shots and acquisition method of sequential surveys must be consistent. Once these surveys have been conducted, they will be compared to a baseline survey to track and monitor CO₂ plume development.

For passive seismic monitoring, surface stations will continuously collect baseline data for a period of 6 months prior to the start of injection. This data, along with historical information, will be used to evaluate both natural and induced seismic events.

4.9.2. Relevance to Project (B.9.b.)

Seismic surveys will be used to track changes in the CO₂ plume in the injection formation. Processing and comparing the subsequent surveys to the baseline survey taken before injection starts allows for the assessment and monitoring of CO₂ plume growth. It will also help to ensure that the CO₂ plume does not extend outside of the intended injection zone. Additional modeling will be used to predict CO₂ plume growth and migration over time by combining the process seismic data and the existing geologic model. The Mt. Simon Sandstone time-lapse surface seismic data will also be used in this additional modeling to predict CO₂ plume and pressure front behavior and to confirm the CO₂ plume stays within the AoR.

Passive seismic monitoring will allow for evaluation of potential fracture generation in the subsurface and, if necessary, appropriate emergency and remedial response actions as discussed in Attachment 09: Emergency and Remedial Response Plan, (2024).

4.9.3. Acceptance Criteria (B.9.c.)

Standard industry practices will be used to ensure that the time-lapse surface seismic data is accurate and appropriate for modeling purposes. Replicated shot point locations, functional

geophones, and similar seismic input data will be used from survey to survey to ensure repeatability.

When the time-lapse surface seismic data and the passive seismic monitoring data is processed, several quality assurance checks will be done in accordance with industry standards. Further detail on this industry standard methods of reformatting, structuring and application will be provided in the final Testing and Monitoring Plan (Attachment 06: Testing and Monitoring, 2024).

4.9.4. Resources/Facilities Needed (B.9.d.)

Vault Dragon CCS LP will provide all resources, equipment, and facilities needed for passive seismic monitoring. A third-party contractor will provide all resources, equipment, and facilities needed for time-lapse surface seismic surveys.

4.9.5. Validity Limits and Operating Conditions (B.9.e.)

Trained personnel will be responsible for the review and analysis of all collected data to be used for the time-lapse surface seismic surveys and passive seismic monitoring. These checks will be done according to industry standard practices.

4.10. Data Management (B.10.)

4.10.1. Data Management Scheme (B.10.a.)

Vault Dragon CCS LP or a designated third-party contractor will maintain the required data as provided elsewhere in the permit application. Data will be digitally backed up or backed up via hard copy as necessary.

4.10.2. Recordkeeping and Tracking Practices (B.10.b.)

All records and gathered data will be held securely and organized properly.

4.10.3. Data Handling Equipment/Procedures (B.10.c)

All equipment used to collect and store data will be properly maintained and operated according to industry standard practices. All supervisory control and data acquisition (SCADA) system(s) and other data acquisition systems will interface with each other as necessary. All data will be held and stored securely.

4.10.4. Responsibility (B.10.d.)

The project manager, as outlined in this document and in the permit application, will be responsible for ensuring proper data management is maintained.

4.10.5. Data Archival and Retrieval (B.10.e.)

Vault Dragon CCS LP will hold all data. These data will be maintained and stored for review as necessary as detailed previously in Section 4.10.1 *Data Management Scheme*.

4.10.6. Hardware and Software Configurations (B.10.f.)

All Dragon Project and vendor hardware/software configurations will be interfaced appropriately.

4.10.7. Checklists and Forms (B.10.g.)

All required checklists and forms will be generated and produced for usage as necessary.

5. Assessment and Oversight (C.)

5.1. Assessments and Response Actions (C.1.)

5.1.1. Activities to be Conducted (C.1.a.)

Please refer to Attachment 06: Testing and Monitoring, (2024) and Attachment 08: Post-injection Site Care and Site Closure, (2024) sections of this permit application to see the frequency of data collection for the activities listed in Table 1 of this document.

After completion of sample analysis and data collection, the results will be QC'd for criteria as noted in Section 4.5 *QC* of this QASP document. If the collected data and sample analysis are not found to be consistent with these standards of QC, they will be reanalyzed as detailed in the section. All evaluations of data consistency will be performed according to industry standard methods and those described in the EPA Unified Guidance (EPA, 2009).

5.1.2. Responsibility for Conducting Assessments (C.1.b.)

Third-party organizations gathering and analyzing data will be responsible for conducting their own internal assessments.

5.1.3. Assessment Reporting (C.1.c.)

All assessment information should be reported to the individual project managers as outlined in this document.

5.1.4. Corrective Action (C.1.d.)

Corrective action that is taken to improve any individual organization's data collection responsibility should be addressed, verified, and documented by the project manager that the issue is reported to. After this, the individual project manager will communicate this information to the other project managers, as necessary.

Corrective actions that impact multiple organizations should be addressed by all members of the project leadership and communicated to the other members on the distribution list as outlined above for the QASP.

It is noted that the results of the corrective action may impact multiple sources of monitoring data/equipment and/or multiple organizations. It is, therefore, the responsibility of Vault Dragon CCS LP to ensure the most cost-effective and efficient action is implemented across the project.

5.2. Reports to Management (C.2.)

5.2.1. QA Status Reports (C.2.a/b.)

It is currently anticipated that QA status reports will not be necessary. If any of the testing or monitoring techniques detailed in Attachment 05: Pre-operational Testing Program, (2024), Attachment 06: Testing and Monitoring, (2024), and Attachment 08: Post-injection Site Care and Site Closure, (2024) are altered, the QASP will be reviewed and updated, as necessary, in consultation with the EPA. Revised QASPs will then be distributed to the full distribution list detailed at the beginning of this document.

6. Data Validation and Usability (D.)

6.1. Data Review, Verification, and Validation (D.1.)

6.1.1. Criteria for Accepting, Rejecting, or Qualifying Data (D.1.a.)

All formation fluid sampling results will be entered into a database for periodic review and analysis. Formation fluid quality data validation will include the review of the following:

- Concentration units
- Sample holding times
- Review of duplicate, blank, and other appropriate QA/QC results

Copies of this analysis, laboratory analytical test results, and/or reports will be kept. In the regular periodic reports, data will be presented in graphical and tabular formats as appropriate to characterize general groundwater quality data and identify intra well variability. After sufficient data has been collected, additional methods might be used to evaluate inter-well variations for formation fluid constituents and to evaluate if significant changes have occurred that could result in the leakage of CO₂ or brine beyond the intended injection zone.

6.2. Verification and Validation Methods (D.2.)

6.2.1. Data Verification and Validation Processes (D.2.a.)

See Sections 6.1.1 *Criteria for Accepting, Rejecting, or Qualifying Data* and 4.5 *QC*. Appropriate statistical software will be utilized to determine data consistency.

6.2.2. Data Verification and Validation Responsibility (D.2.b.)

Vault Dragon CCS LP or the designated third-party contractor will verify and validate formation fluid data.

6.2.3. Issue Resolution Process and Responsibility (D.2.c.)

Vault Dragon CCS LP or the designated third-party contractor will review the groundwater data handling management and assessment processes as necessary. Staff involved in these processes will consult with the Project Manager to determine if any actions are required to resolve issues.

6.2.4. Checklist, Forms and Calculations (D.2.d.)

Checklists and forms will be developed specifically to meet permit requirements. These checklists or forms will be developed as needed and provided as part of regular reports, if necessary.

6.3. Reconciliation with User Requirements (D.3.)

6.3.1. Evaluation of Data Uncertainty (D.3.a.)

Software will be used to determine groundwater data consistency using methods consistent with the EPA (EPA, 2009).

6.3.2. Data Limitations Reporting (D.3.b.)

Data that are collected and evaluated will be presented using appropriate data-use limitations.

7. References

ASTM D6452 : Standard Guide for Purging Methods for Wells Used for Ground Water Quality Investigations, 2018, ASTM Standard D6452: ASTM International.

ASTM Method D6564-00, Standard guide for field filtration of groundwater samples, 2005, ASTM Standard D6564-00: West Conshohocken, PA, ASTM International.

Atekwana, E. A., and R. V. Krishnamurthy, 1998, Seasonal variations of dissolved inorganic carbon and $\delta^{13}\text{C}$ of surface waters: application of a modified gas evolution technique: *Journal of Hydrology*, v. 205, no. 3, p. 265–278, doi:10.1016/S0022-1694(98)00080-8.

Attachment 01: Narrative, 2024, Underground Injection Control Class VI Permit Application: Dragon.

Attachment 02: AoR and Corrective Action Plan, 2024, Underground Injection Control Class VI Permit Application: Dragon.

Attachment 03: Financial Assurance Plan, 2024, Underground Injection Control Class VI Permit Application: Dragon.

Attachment 05: Pre-operational Testing Program, 2024, Underground Injection Control Class VI Permit Application: Dragon.

Attachment 06: Testing and Monitoring, 2024, Underground Injection Control Class VI Permit Application: Dragon.

Attachment 08: Post-injection Site Care and Site Closure, 2024, Underground Injection Control Class VI Permit Application: Dragon.

Attachment 09: Emergency and Remedial Response Plan, 2024, Underground Injection Control Class VI Permit Application: Dragon.

EPA, 2009, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance.

Hackley, K. C., S. V. Panno, and T. F. Anderson, 2010, Chemical and isotopic indicators of groundwater evolution in the basal sands of a buried bedrock valley in the midwestern United States: Implications for recharge, rock-water interactions, and mixing: *Geological Society of America Bulletin*, v. 122, no. 7–8, p. 1047–1066, doi:10.1130/B26574.1.

International Society of Beverage Technologists, 2021, *ulc Carbon Dioxide Quality & Food Safety Guidelines and Analytical Methods and Techniques Reference*: Washington, D.C, International Society of Beverage Technologists.

Puls, R. W., and M. J. Barcelona, 1996, Ground Water Issue: Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures: U.S. Environmental Protection Agency.

Appendix A - Sample Documentation

Contains proprietary business information.

Plan revision number: 1.0

Plan revision date: 22 November 2024

Sample documentation forms will be provided upon vendor selection.

Appendix B - Standard Industry Practices for Calibration

Industry practices will be provided upon selection of sensors and tools.